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Abstract—Multi-task and relational learning with Gaussian
processes are two active but also orthogonal areas of research.
So far, there has been few attempt at exploring relational
information within multi-task Gaussian processes. While ex-
isting relational Gaussian process methods have focused on
relations among entities and in turn could be employed within
an individual task, we develop a class of Gaussian process
models which incorporates relational information across mul-
tiple tasks. As we will show, inference and learning within the
resulting class of models, called relational multi-task Gaussian
processes, can be realized via a variational EM algorithm.
Experimental results on synthetic and real-world datasets
verify the usefulness of this approach: The observed relational
knowledge at the level of tasks can indeed reveal additional
pairwise correlations between tasks of interest and, in turn,
improve prediction performance.

Keywords-Relational Learning; Multi-task Learning; Link-
based Analysis; Nonparametric Bayesian Models

I. INTRODUCTION

Multi-task learning, see e.g. [4], [7], [12], [1], [2], is a
natural and widely successful setting to collaboratively solve
a set of related learning tasks. Intuitively, by learning a joint
model for all tasks, the method has to fit the observed data
from all tasks simultaneously. This allows for information
between different tasks to be shared and can significantly
alleviate problems associated with sparse training data such
as overfitting and unstable search and in turn often result
in significant performance gains compared to single task
models. For instance, within preference elicitation, an im-
portant subtask of many recommendation systems, we can
share information from modeling the preferences of different
users, i.e., learning the preference of one user is viewed as
a task.

This sharing of information between related tasks is close
in spirit to statistical relational learning, see e.g [9], [14], that
combines aspects of relational logic and statistical reasoning
and learning. For example, when eliciting preferences of
users, it is often helpful to consider the social network
among them. If two users A and B are friends, their
preferences are likely to be similar. They would give similar
ratings on an item more likely than users without social
relations. Known preference of a user can provide useful in-
formation about unknown preferences of related users. Thus
the observable relations also allow for information between
entities (users) to be shared and to improve performance.

Despite these commonalities, there are some fundamental
differences among existing multi-task and relational learning
approaches. Most existing multi-task learning methods lever-
age common latent relations between high-level entities,
namely tasks, whereas relational learning methods focus on
the observed relations between low-level entities such as
items. Consequently, it is natural to ask the questions

• How do we explicitly employ observed relations among
tasks within multi-task learning?

• Can observed relational knowledge reveal additional
correlations between tasks of interest?

An investigation of these questions was the seed that grew
into our main contribution: relational multi-task Gaussian
processes (RMTGPs).

Specifically, relational multi-task Gaussian processes in-
troduce for each task one latent function fq, on which
we condition the observations. These latent functions are
drawn from a common Gaussian process prior for all tasks.
However, in contrast to multi-task Gaussian processes (MT-
GPs), the latent functions in RMTGPs are not independent
of each other given the shared prior but coupled by the
observable task relations. Technically, we introduce an addi-
tional random variable rq,q′ representing a relation between
tasks q and q′. Its value (true / false) is conditioned on
the latent functions fq and fq′ . Intuitively, tasks with a
true relation between them will have more similar latent
functions than those false relations. Viewing functions as
nodes in a graphical model, this establishes a network of
inter-linked tasks so that information of individual tasks
can propagate through the whole network. Consequently,
RMTGPs not only leverage common latent relations across
tasks, but also make use of observed relations between
tasks to reveal additional correlations between the tasks of
interest1.

The rest of the paper is organized as follows. We start off
by touching upon related work in Sec. II. Then we introduce
the relational multi-task models in Sec. III and Sec. IV. We
develop the corresponding inference, learning, and (trans-
ductive) prediction methods in Sec. V. Before concluding,
we present our experimental evaluation in Sec. VI.

1For the sake of simplicity, we do not model relations among low-level
entities. This can easily be accomplished by applying relational hierarchical
Gaussian process framework to relational GPs instead of GPs.



II. RELATED WORK

The relational multi-task Gaussian process model unifies
two lines of research within the Gaussian process commu-
nity, namely relational and multi-task learning.

Statistical relational learning, see e.g. [9], [14] for
overviews, investigates how to employ relations among enti-
ties within probabilistic models. This is mainly motivated by
the growing need in analyzing data that is best represented
as a graph, such as the World Wide Web, social networks,
social media, biological networks, communication networks,
and physical network systems. To incorporate links and
relations into probabilistic kernel methods such as Gaussian
processes (GPs), there are essentially two approaches. One is
encoding relations as random variables conditioned on the
latent function values of entities involved in relations [8],
[28], [26]. The other is to encode relations in the covariance
matrixes [32], [23]. Intuitively, this represents relational
information as hidden common causes and condition the
outputs on the relations.

Multi-task learning [24], [7], [3], [1], [31] is to collab-
oratively learn a set of related tasks such that prediction
about one query can leverage information from all other
queries. Lawrence and Platt [19] first leveraged Gaussian
process in multi-task learning, where the covariance matrix
is task-specific block diagonal structure, the covariances
between different tasks are zero. Yu et al. [29] introduced a
hierarchical GP model, where the information is transferred
by a “informed prior” that is learned from the individual
tasks. One recent extension is proposed by Birlutiu et al. [5].
Additionally, Bonilla et al. [6] introduced a GP model for
multi-task learning, which generalized over task attributes
with a Kronecker product based method. Most recently,
Deshpande et al. [10] and Landwehr et al. [18] considered
multi-task learning in relational domains. In contrast to the
present paper, they employed relations within tasks and not
across tasks. Besides Gaussian processes, other techniques
are employed for multi-task learning, e.g., the task clustering
approaches [25], [3], [27], the regularization methods [12],
[2], and neural networks [7]. Several relational approaches
have been explored. For example, Evgeniou et al. proposed
a regularization methods for multi-task learning with task
relations [11]. Kato et al. introduced a similar method with
a different penalization term [17]. Sheldon extended their
works to incorporate non-linear kernels [22]. In contrast
to the regularization-based methods, this paper proposes
a novel approach which models the prediction uncertainty
in multi-task learning and incorporates the observable task
relations into a flexible probabilistic model. The method
encodes both latent and observed relations between tasks
within a relational GP framework. The knowledge propa-
gation between tasks is based on the relational likelihood
distributions. The proposed framework can also naturally be
applied to model multi-relational tasks.

III. RELATIONAL LINEAR MULTI-TASK MODELS

Let us start with a simple linear regression model for
the relational multi-task learning, then extend it to a more
flexible Gaussian process model. Assume that there are
(1) a set of n items E = {e1, . . . , en} with attributes
X = {xi : xi ∈ RD, i = 1, . . . , n}, and (2) a set of Q
tasks with relations R = {rq,q′ : q, q′ ∈ 1, . . . , Q}, as well
as (3) real-valued observations on the items for each task q,
yq = {yqi : yqi ∈ R, i = 1, . . . , n}.

A. Linear Model for Single-task Learning

In Bayesian analysis, a linear regression model for a single
task can be represented as:

ω|µ,K ∼ N (µ,K)

f(xi) = xT
i ω, i = 1, . . . , n

yi|f(xi), σ
2 ∼ N (f(xi), σ

2). (1)

The observations yi are modeled as noisy linear combination
of attributes with a D-dimensional weight ω, which is drawn
from a Gaussian with mean µ and covariance matrix K.
f(xi) denotes the true value of the data point i. σ2 is
variance of the noise.

B. Linear Model for Multi-task Learning

In multi-task learning, there is an underlying assumption
that the tasks are distinct, but related with each other. One
task can borrow strength from the information extracted
from another tasks. In Bayesian framework, it can be mod-
eled with hierarchical method:

ωq|µ,K ∼ N (µ,K), q = 1, . . . , Q

fq(xi) = xT
i ω

q, i = 1, . . . , n

yqi |f
q(xi), σ

2 ∼ N (fq(xi), σ
2). (2)

There is one distinct weight vector ωq for each task q, but
they are drawn from a common prior N (µ,K). The shared
prior parameters µ and K model the common properties in
the different tasks. In the hierarchical Bayesian framework,
each task is distinguished via personalized parameters, but
closely connected with the common prior.

C. Linear Model for Relational Multi-task Learning

Most existing multi-task learning approaches do not con-
sider observable relations among tasks. However, link and
relational information in general have been proved to be
a promising way to improve performance. For example, in
a social media website, songs are entities, users are tasks.
Ratings of users on songs are observations. Additionally we
have the social relations between users (tasks). Users being
friends would give similar rating values on a song more
likely than users with no social relations. Knowing such
kinds of relational information will reduce the uncertainty
on learning and prediction. To explicitly incorporate the
information into the hierarchical linear model, we introduce



Figure 1. The RMTGP model for a simple example with two tasks and
two items. f1 and f2 are random functions drawn from a GP prior, one
for each task. The mean and covariance matrix of the GP is drawn from
a Normal-Inverse-Wishart distribution with parameters ν0, κ0, µ0 and Λ0.
The two functions are coupled with the relation r1,2 between tasks. x1 and
x2 are attributes of the two items.

an additional random variable rq,q′ for each relation between
tasks q and q′. The variable rq,q′ is conditioned on ωq and
ωq′ with the probability

P (rq,q′ |ωq, ωq′ , λ) =

exp(−λ(ωq − ωq′)T (ωq − ωq′)), (3)

where λ > 0 is the rate parameter. The probability naturally
captures the property in relational multi-task learning. The
less the difference between weight vectors of the two tasks,
the more likely there are relations between them. In the
social media example, the weight vector ωq represents in-
trinsic preference of a user on songs. If two users are friends,
then they likely have similar preferences (i.e. weights ωq),
and vice versa. The complete linear multi-task model with
observable task relations is defined as

ωq|µ,K ∼ N (µ,K), q = 1, . . . , Q

rq,q′ |ωq, ωq′ , λ ∼ exp(−λ(ωq − ωq′)T (ωq − ωq′))

q, q′ = 1, . . . , Q

fq(xi) = xT
i ω

q, i = 1, . . . , n

yqi |f
q(xi), σ

2 ∼ N (fq(xi), σ
2). (4)

IV. RELATIONAL NON-LINEAR MULTI-TASK MODELS
WITH GAUSSIAN PROCESSES

So far, we have assumed that the latent functions are
linear. Each function is characterized by its weight vector.
The parameterization of functions limits the flexibility of
the model, since the mathematic form of functions is not
necessarily linear, there exists uncertainty. To overcome the
limitation, we extend the linear case with nonparametric

techniques, and in turn offer the relational multi-task Gaus-
sian process model (RMTGP).

The RMTGP model is graphically represented in Fig. 1.
For each task, we introduce a random function fq , and
assume that all functions are drawn from a Gaussian process
(GP), which is a distribution over functions. Additionally
the functions are not independent of each other given the
GP prior, instead, they are linked together due to some
relations. The tasks having relations between them will likely
have similar functions. To model these dependencies, we
again introduce for each relation rq,q′ an additional random
variable with the conditional likelihood P (rq,q′ |fq, fq′).
Intuitively, the more similar functions fq and fq′ are, the
more likely there is a relation between the tasks q and q′.
Let us now introduce the prior distributions, the likelihood
function for task relations, and the generative process of the
RMTGP model.

A. Prior Distributions

We define a GP prior over the attribute-wise latent func-
tions, shared by all tasks. Specifically, for a random function
fq(·) of a task q, the function values {fq(x1), f

q(x2), . . .}
at an infinite number of data points can be represented as
an infinite dimensional vector, i.e., the i’th dimension is the
function value fq(xi) (shortened as fq

i ). We assume that
the infinite dimensional random vector follows a Gaussian
process prior with mean function m(xi) and covariance
function k(xi, xj). In turn, any finite set of function values
{fq

i : i = 1, . . . , n} has a multivariate Gaussian distribution
with mean µ and covariance matrix K defined in terms of the
mean and covariance functions of the GP [20]. Formally, the
prior distribution over functions of item attributes is defined
as follows:

P (fq|µ,K) = N (µ,K)

=
1

(2π)n|K| 12
exp

(
−1

2
(fq − µ)TK−1(fq − µ)

)
,

(5)

where fq denotes the function values (fq
1 , . . . , f

q
n) of the

items for the task q. K is the n× n covariance matrix.
One is tempted to use some covariance function with a

finite number of hyperparameters to compute K. However
the parameterized kernel function limits the flexibility of
the model as e.g. Yu et al. pointed out [29]. Therefore, we
assume that the prior parameters µ and K are directly drawn
from a conjugate hyperprior, i.e. Normal-Inverse-Wishart
(NIW) distribution [13]:

P (µ,K|κ0, ν0, µ0,Λ0) ∝ |K|−
ν0+n+2

2 exp (v) ,

v = −1

2
tr(Λ0K

−1)− κ0

2
(µ− µ0)

TK−1(µ− µ0). (6)

The parameters ν0 > n and κ0 > 0 are the degrees
of freedom for K and the number of prior measurements



for µ. Λ0 represents our prior belief on the covariance
matrix before seeing any observations {yq}. For that we
can use any Mercer kernel function. A typical choice is
the squared exponential covariance function with isotropic
distance measure:

k(xi, xj) = τ2 exp(−ρ2

2

∑D

d
(xi,d − xj,d)

2) (7)

where τ and ρ are parameters of the covariance function, and
xi,d denotes the d-th dimension of the attribute vector xi.
Now µ and K are samples of a NIW distribution, they are
flexible enough to reflect any possible covariance structure
shared among all tasks. By the two parameters µ and K,
the latent correlations between tasks are represented in an
elegant way.

B. Likelihood for Task Relations

We now define the likelihood distribution for the observ-
able task relations. As already argued earlier, the related
tasks generally show similar intrinsic properties, i.e., their
functions are likely to be close to each other. We extend the
likelihood definition in linear model, and have

P (rq,q′ |λ, fq, fq′) = exp(−λd(fq, fq′)), (8)

where d(fq, fq′) denotes the distance between two func-
tions. This encodes the natural assumption: The less the
difference between the functions fq and fq′ , the more likely
is it that the task q is related/linked to the task q′. There are
many choices for the distance function used. The typical
ones include the L1 and L2 norm. In this paper, we leverage
the L1 norm:

d(fq, fq′) = ||fq − fq′ ||1
=
∑
i

|fq
i − fq′

i |. (9)

C. The Generative Model

Finally we complete the relational multi-task GP model
with the generative procedure. Give the hyperparameters θ =
{κ0, ν0, µ0,Λ0, σ

2, λ}, the data is generated as follows:

K|ν0,Λ0 ∼ IWν0(Λ
−1
0 ),

µ|µ0,K, κ0 ∼ N (µ0,
1

κ0
K)

fq|µ,K ∼ N (µ,K), q = 1, . . . , Q

yqi |f
q
i , σ

2 ∼ N (fq
i , σ

2), i = 1, . . . , n

rq,q′ |λ, fq, fq′ ∼ exp(−λ||fq − fq′ ||1). (10)

Where IWν0(Λ0) denotes the Inv-Wishart distribution with
freedom degree ν0. Generating a matrix from the Inv-
Wishart distribution amounts to the following two steps:

• Sampling ν0 vectors from a Gaussian distribution

αt|Λ0 ∼ N (0,Λ0), for t = 1, . . . , ν0

• Compute the covariance matrix with

K =

(
ν0∑
t=1

αtα
T
t

)−1

.

V. INFERENCE AND LEARNING

The key inferential problem in the relational nonpara-
metric hierarchical model is to compute the joint poste-
rior distribution of the unknown variables given the multi-
task observations Y = {yq}Qq=1 and the relations between
tasks R = {rq,q′}Qq,q′=1, as well as the entity attributes
X = {xi}ni=1. The unknown variables in the model are the
latent functions f = {fq}Qq=1, one for each task. Thus the
posterior is proportional to:

P (f |Y,R,X, θ) ∝ P (K|X, ν0,Λ
−1
0 ) P (µ|µ0,K, κ0)

×
∏
q

P (fq|µ,K)P (Y q|fq, σ2I)

×
∏
q,q′

P (rq,q′ |fq, fq′) (11)

where θ denotes hyperparameters of the model, θ =
(κ0, ν0,Λ

−1
0 , µ0, λ, σ

2). It is clear that the equation is in-
tractable, since unknown functions are coupled together by
the task relations R. To address the problem, we consider to
decouple the dependencies with a variational approximation
algorithm [15]. In particular, we expect to find a varia-
tional distribution P̂ (f) to approximate the true posterior
P (f |Y,R,X, θ) as close as possible. For computational effi-
ciency, a family of fully-factorized distributions are assumed,

P̂ (f1, . . . , fQ) =

Q∏
q=1

P̂ (fq), (12)

and for each fq , the variational distribution is defined as a
Gaussian:

P̂ (fq) = N (fq|µ̂q, K̂q), (13)

where µ̂q and K̂q are the mean and covariance matrix
of the variational distribution. The difference between the
variational distribution and the true posterior distribution is
measured via Kullback-Leibler (KL) divergence, i.e.,

KL(P̂ ||P ) = EP̂ [log P̂ (f)]− EP̂ [logP (Y,R, f |X, θ)]

+ logP (Y,R|θ).

Permuting the equation, we get an inequality about the log-
likelihood of the data:

logP (Y,R|θ)
= EP̂ [logP (Y,R, f |X, θ)]− EP̂ [log P̂ (f)] +KL(P̂ ||P )

≥ EP̂ [logP (Y,R, f |X, θ)]− EP̂ [log P̂ (f)]. (14)

The right terms define a lower bound of the log-likelihood of
the data. It can also be derived from Jensen’s inequality. The



difference between the lower bound and the log-likelihood is
the KL divergence. The larger the lower bound is, the smaller
the divergence is, and the closer the variational distribu-
tion approximates the true posterior. Thus the probabilistic
inference problem is now converted into an optimization
problem: maximize the lower bound of the log-likelihood
with respect to the variational parameters. In details, the
lower bound is written as:

L =
∑
q,q′

EP̂ [logP (rq,q′ |fq, fq′ , λ)]

+
∑
q

EP̂ [logP (yq|fq, σ2)]

+
∑
q

EP̂ [logP (fq|µ,K)]

+ logP (µ,K|X, ν0, κ0, µ0,Λ
−1
0 )

−
∑
q

EP̂ [log P̂ (fq)]. (15)

The first two terms are about the expectations of likelihoods:
task relations and observations per tasks. The third term
is related to the expectation of the prior. The fourth term
is about the mean and covariance matrix of the prior.
The last term is the entropy of the variational distribution.
Since the variational distributions P̂ (fq) are factorized and
defined as Gaussian, the computation of (15) is relatively
straightforward, and we have

EP̂ [logP (rq,q′ |fq, fq′ , λ)]

= −λ
[
tr(K̂q + K̂q) + (µ̂q − µ̂q′)T (µ̂q − µ̂q′)

]
EP̂ [logP (yq|fq, σ2)]

= −1

2

[
n log σ2 + tr(K̂q) + (yq − µ̂q)T (yq − µ̂q)

]
EP̂ [logP (fq|µ,K)]

= −1

2

[
log det(K) + tr(K−1K̂q)

]
− 1

2
(µ̂q − µ)T (µ̂q − µ)

EP̂ [log P̂ (fq)]

= −1

2
log det(K̂q)

logP (µ,K|X, ν0, κ0, µ0,Λ
−1
0 )

= −1

2
[(ν0 + n+ 2) log det(K) + tr(Λ0K

−1)

+ κ0(µ− µ0)
TK−1(µ− µ0)]. (16)

Where tr(·) and det(·) denote the trace and determinant of a
matrix respectively. Note that the constant terms (e.g. log 2π)
do not appear in the equations.

Now we learn the variational parameters {µ̂q, K̂q} by
maximizing the lower bound. Since the prior mean µ and
covariance matrix K are unknown as well, we leverage
variational EM algorithm to learn the two sets of parameters

together. In the E-step, we maximize the lower bound with
respect to the variational parameters {µ̂q, K̂q}. The step
actually optimizes the variational distribution to approxi-
mate the true posterior distribution given the current prior
parameters. In the M-step, we maximize the lower bound
with respect to the prior parameters µ and K. In each step,
we use coordinate ascent to solve the optimization problem.
Specifically, we take the derivative with respect to µ̂q (resp.
K̂q , µ, and K), set it to zero, and solve the equation, then get
the update formula for E- and M-steps. The partial derivative
equations are defined as follows

0 =
∂L
∂µ̂q

= K−1(µ− µ̂q) +
1

σ2
(yq − µ̂q)

− 2λ
∑
q′

(µ̂q − µ̂q′)

0 =
∂L
∂K̂q

= −1

2
K−1 − 1

2σ2
I − λQqI +

1

2
(K̂q)−1

0 =
∂L
∂µ

=

Q∑
q=1

K−1(µ̂q − µ) + κ0K
−1(µ0 − µ)

0 =
∂L
∂K

=
1

2

Q∑
q=1

K−1[K̂q + (µ̂q − µ)(µ̂q − µ)T ]K−1

− Q

2
K−1 − ν0 + n+ 2

2
K−1 +

1

2
K−1Λ0K

−1

+
κ0

2
K−1(µ− µ0)(µ− µ0)

TK−1

0 =
∂L
∂σ2

=
1

2σ4

Q∑
q=1

[tr(K̂q) + (yq − µ̂q)T (yq − µ̂q)]− nQ

2σ2
.

(17)

Where q′ denotes tasks which have relations with the task
q. Qq is the number of related tasks of q.

Putting everything together, the variational EM method
consists of:

• E step:

µ̂q = (I + (σ−2 + 2λQq)K)−1

× (µ+ σ−2Kyq + 2λK
∑
q′

µ̂q′),

K̂q = (K−1 + (σ−2 + 2λQq)I)−1.

• M step:

µ = a µ0 +
∑
q

b µ̂q,

K = c [Λ0 + κ0(µ− µ0)(µ− µ0)
T

+
∑
q

K̂q + (µ̂q − µ)(µ̂q − µ)T ],

σ2 = d
∑
q

tr(K̂q) + (yq − µ̂q)T (yq − µ̂q)

where a,b,c and d are coefficients: a = κ0/(Q + κ0),
b = 1/(Q+ κ0), c = 1/(Q+ ν0 + n+ 2), and d = 1/nQ.



Iteratively run the E- and M-steps until convergence, then we
can get the approximate posterior distribution N (µ̂q, K̂q)
for each task q and the common prior N (µ,K) shared
by all tasks. The convergence can be monitored by tracing
the difference of the optimized parameters (e.g. µ and K)
between two iterations. The procedure can be initialized with
µ = 0 and K = Λ0.

From the E step, we can obviously observe how the
tasks are mixed by observed task relations. Updating the
variational mean µ̂q for the task q takes into account three
components:

1) the prior information K−1µ,
2) the observations within the task 1/σ2yq ,
3) the variational means µ̂q′ of the tasks having relations

with q.
In updating variational covariance matrix K̂q, the term λQqI
comes from the related tasks as well. The M step is similar
to that in non-relational multi-task learning. It is reasonable,
since the prior parameters (µ and K) are independent of task
relations given the latent functions (µ̂q and K̂q).

A. Transductive Prediction

The prediction inference in multi-task learning is to pre-
dict values of unobserved entities. In this section we consider
the predictive inference in a transductive setting, i.e. there
is no new entity introduced in prediction. It can also be
viewed as a learning problem with missing values [30]. In
particular, we still use the variational EM method to address
the problem, but the E step is modified such that it learns not
only the variational parameters, but also the expectation of
unseen values for each task. Let I and U denote the indexes
of entities with and without observations. Then the new E
step is as follows:

µ̂q = (I +
1

σ2
KI + 2λQqK)−1

× (µ+
1

σ2
KIy

q
I + 2λK

∑
q′

µ̂q′), (18)

K̂q = (K−1 +
1

σ2
II + 2λQqI)−1, (19)

where KI denotes the prior covariance matrix K, but only
keeping the columns I, all others being zeros. In comparison
with the E step in the last section, updating variational mean
and covariance matrix for each task will only consider the
data points having observations. µ̂q

U will be the expectation
of the missing values, which computation depends on the
observations within the same tasks, and the observations
from the relational tasks.

In the M step, the update of µ and K remain unchanged,
since the two parameters are independent of observations
given the latent functions. Only σ2 is updated differently:

σ2 =
∑
q

1

nq

[
tr(K̂q

I ) + (yqI − µ̂q
I )

T (yqI − µ̂q
I )
]
, (20)

where nq is the number of observations in the task q. σ2 is
the “variance” averaged over all observed data points.

Here we introduce transductive prediction, the proposed
model can also work on inductive setting. In the inductive
setting, the covariance between the new entities and the
known ones can be computed via the nyström method [21]
or similarity matching [33].

VI. EMPIRICAL ANALYSIS

Our intention in the empirical analysis is to investigate
the following questions:

• (Q1) Does RMTGP perform better than single task GPs
and multi-task Gaussian processes (MTGP) without
relations?

• (Q2) Is its performance more stable for smaller number
of observed training examples?

• (Q3) How does its performance depend on the infor-
mativeness of the task relations provided?

To this aim, we implemented RMTGPs as well as single-
task GPs and MTGPs within Python and evaluated them
on two datasets, a synthetic dataset and Kamishima’s Sushi
data [16]. For (R)MTGP, we conducted the experiments
within a transductive setting and measured performance
using three commonly used metrics:

• the mean absolute error

MAE =
1

n

∑
i

|yi − fi|,

• the root mean squared error

RMSE =

√
1

n

∑
i

(yi − fi)2,

• the coefficient of determination

R2 =

(∑
i(yi − ȳ)(fi − f̄)

(n− 1)σyσf

)2

.

Where MAE and RMSE measure the difference between
predicted and real values, i.e., the smaller, the better, the
coefficient of determination R2 measures the generalization
performance of a model, i.e., the larger, the better. For
all experiments, we randomly selected 10% (20%,...,70%)
observations of each task for training and the rest for testing.
For each setting (10%,...,70%), the selection was repeated 10
times to get the average performance.

A. Data Description

The synthetic dataset is generated using the generative
procedure described earlier. That is, we uniformly sam-
ple n = 100 data points with 1-dimensional attributes
xi ∈ (−15,+15). The hyperparameters µ0 are computed
assuming µ0 = cos(x) and Λ0 using a squared exponential
kernel. Then, we draw µ and K from the NIW distribution
with parameters µ0, Λ0, ν0 = n + 10, and κ0 = 2.
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Figure 2. Experimental results on the synthetic (left) and Sushi (right) datasets averaged over 10 random reruns, each on predicting unseen values given
different percentages of observations. MAE (top) and RMSE (middle); the lower the two measures, the better the performance. R2 (bottom); the larger,
the better. The results show that exploiting relations among tasks can reveal additional correlations and in turn improve the prediction performance.



Next, 10 functions are sampled from N (µ,K), and we add
some Gaussian noise with σ2 = 0.01. Finally, the relations
between tasks are sampled based on the L1 norm.

The Sushi dataset was collected by Kamishima [16]. It
is about preferences of users on 10 different sushi variants:
ebi, anago, maguro, ika, uni, sake, tamago, toro, tekka-maki,
and kappa-maki. Each sushi type is described in terms of the
following attributes: style, major group, minor group, heavi-
ness/oiliness, consumption frequency, normalized price, and
sell frequency. In total, there are 5000 users, and we ran-
domly select 1000 users for our experiments. Each user
provides a full ordering of the ten sushi types according
to her preference. The ratings range from 1 to 10 where
the most preferred sushi gets the rating 10. Additionally,
each user is described in terms of attributes: gender, age,
and others that compile regional information. As there are
no task relations (i.e. relations between users) in the sushi
dataset, we computed artificial relations with two methods.
(1) We established informative relations using the averaged
L1 norm of user ratings thresholded at 0.3. (2) We computed
un-informative relations using the cosine similarities of
user attributes thresholded at 0.8 (i.e. there is a relation
between two users only if they have the same age, gender,
living region in early life and living region currently). The
latter relations are un-informative since users with the same
attributes do not necessarily have the same preferences on
sushi. We further note that, although informed relations are
based on ratings, they do not provide much information
about the test set since the resulting relations (exist/non-
exist) only compile whether the preferences of users are
similar or not, no more information. In turn, it is still sensible
to compare performance between RMTGP and (MT)GP.
Moreover, informative relations are not transitive: u1 and
u2 respectively u2 and u3 linked does not imply u1 and u3

linked.

B. Experimental Results

Fig. 2 (left) summarizes the results on the synthetic
dataset. As one can see, in all cases (different percentages
of known observations for each task), RMTGPs outperform
non-relational MTGPs and single-task GPs. A Wilcoxon
rank sum test (p-value 0.01) shows that this difference
is significant. Moreover, we see that the RMTGP model
performs particularly well when the number of known obser-
vations is small. Overall, the RMTGP improved prediction
performance between 5.10% and 11.72%. Furthermore, the
variability of RMTGP’s performance across multiple tasks
is substantially smaller than for non-relational MTGP.

The experimental results on the Sushi dataset are shown
in Fig. 2 (right). When the relations between users are in-
formative, RMTGPs outperform non-relational MTGPs and
single-task GPs, especially for low percentages of known
observations. Furthermore, RMTGPs also achieve good per-
formance if the relations are not informative. The results
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Figure 3. Experimental results about the impact of relations being
informative on the overall performance. The analysis is conducted with
the Sushi datasets where task relations are computed with the ratings on 2
(4, 6, 8, 10) sushi types. MAE (top) and RMSE (middle); the lower the two
measures, the better the performance. R2 (bottom); the larger, the better.



are very similar but still slightly better than non-relational
MTGPs and substantially better than single-task GPs. What
is the reason that RMTGPs did not substantially outperform
MTGP when considering less informative relations? We find
that the L1 norm of the preference differences averaged over
all users is 0.5709. The norm averaged over users having
the un-informative relations only is 0.5660. So, there is a
difference but not a significant one. In other words, users
linked with such relations do not necessarily have similar
sushi preferences. Therefore, the benefit of employing these
relations within RMTGPs is low and RMTGP essentially
coincides with MTGP without task relations. In other words,
RMTGPs are a proper generalization of MTGPs and auto-
matically balance between explicit task relations and latent
dependencies across tasks learned from observations: if the
task relations are uninformative, RMTGP employs just the
latent dependencies; if the task relations are informative,
RMTGP employs the revealed additional correlations to
improve the predictive performance.

To further investigate the impact of relations being in-
formative on the overall performance, we ran the same
experiment with relations of different informativeness levels,
namely relations computed using the ratings on the first 2
(4, 6, 8, 10) sushi types only. Fig. 3 summarizes the exper-
imental results. In all cases RMTGPs perform significantly
better than MTGPs. Already using the L1 norm on the first
two of the ten sushi preferences to establish task relations
results in significantly better performance.

To summarize, the experimental results clearly show that
all questions (Q1)-(Q3) can be answered affirmatively: ex-
ploiting relations among tasks can reveal additional correla-
tions and in turn improve the prediction performance.

VII. CONCLUSION

Most existing multi-task Gaussian process approaches
treat all tasks a priori the same: fully related or totally
irrelevant, the Gaussian process has to figure this out by
learning. In reality, however, observable relations among
tasks fall everywhere along this spectrum and we may know
this a priori. In this work, we have shown how to incorporate
relations among tasks within a Gaussian process frame-
work. The observed relations among tasks reveal additional
correlations that in turn can result in performance gains.
Specifically, we have developed a Bayesian framework to
multi-task learning based on Gaussian processes that exploits
observed relations among tasks. On synthetic and real-world
datasets, we have shown that the resulting class of non-
parametric models can yield significantly better predictive
performance than single- and multi-task Gaussian processes.

While this paper has focused on regression, the proposed
relational multi-task Gaussian process framework can be
used for classification as well as for preference learning.
Furthermore it can be generalized for directed relations as

well as multiple classes of relations. These are promising
avenues for future work.
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