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Abstract— In this paper, we present an approach for mod-
eling 3D environments based on octrees using a probabilistic
occupancy estimation. Our technique is able to represent full
3D models including free and unknown areas. It is available
as an open-source library to facilitate the development of 3D
mapping systems. We also provide a detailed review of existing
approaches to 3D modeling. Our approach was thoroughly
evaluated using different real-world and simulated datasets.
The results demonstrate that our approach is able to model
the data probabilistically while, at the same time, keeping the
memory requirement at a minimum.

I. I NTRODUCTION

Several robotic applications require a 3D model of the
environment. Three-dimensional models are relevant in many
airborne, underwater, or extra-terrestrial missions and may
also be needed in domestic scenarios, for mobile manipula-
tion tasks, or for navigation in multi-level environments.

In the past, various approaches for modeling environments
in 3D have been proposed. Figure 1 depicts a tree observed
in 3D laser range scans and modeled in three commonly used
representations, namely point clouds, elevation maps [7],
and multi-level surface maps [19]. It also shows the rep-
resentation of the tree using the structure proposed in this
paper which has been designed to meet the following four
requirements:

Full 3D model. The map should be able to model arbitrary
environments without prior assumptions about it. The
representation should model occupied areas as well as
free space. If no information is available about an area
(commonly denoted as “unknown” areas), this informa-
tion should be encoded as well. While the distinction
between free and occupied space is essential for safe
navigation, information about unknown areas is impor-
tant for the autonomous exploration of an environment.

Updatable. It should be possible to add new information
or sensor readings at any time. Modeling and updating
should be done in aprobabilistic fashion. This will
account for sensor noise or measurements which result
from dynamic changes in the environment. Furthermore,
multiple robots should be able to contribute to the same
map and a previously recorded map should be extendable
when new areas are explored.
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Fig. 1. 3D representation of a tree as a point cloud (top left), elevation map
(top right), multi-level surface map (bottom left), and usingour approach
(bottom right).

Flexible. The extent of the map should not have to be known
in advance. Instead, the map should be dynamically
expanded as needed. The map should be multi-resolution
so that, for instance, a high-level planner for navigation
will be able to use a coarse map, while a local planner,
e.g. for manipulation tasks, may operate using a �ne
resolution. This will also allow for ef�cient visualizations
which scale from coarse overviews to detailed close-up
views.

Compact.The map should be stored ef�ciently, both in
memory and on disk. It should be possible to generate
compressed �les for later usage or convenient exchange
between robots even under bandwidth constraints.

Although 3D mapping is an integral component of many
robotic systems, there exist very few readily available im-
plementations. Recently, the European Commission iden-
ti�ed the lack of available software modules for robotic
applications as a limiting factor both in research and in
industrial applications, leading to the BRICS (Best Practice
in Robotics) project.

In this paper, we present an integrated mapping sys-
tem based on octrees for the representation of the three-
dimensional structure of the environment. The goal is to



combine the advantages of previous approaches to 3D
environment modeling to meet the requirements speci�ed
above. The advantage of our approach is that it allows
for ef�cient and probabilistic updates while keeping the
memory consumption at a minimum. We implemented our
approach and thoroughly evaluated it on various simulated
and real datasets of both indoor and large-scale outdoor
environments. As a major contribution, our implementation
in form of a self-contained C++ library is freely available
at http://octomap.sf.net/ as open source with the aim of
facilitating future development of systems operating in three-
dimensional environments.

This paper is organized as follows. After providing a
detailed discussion of related work in this area, we present
our multi-resolution map structure that is able to model
arbitrary three-dimensional environments including their free
and unknown areas in Sec. III. In Sec. IV we then evaluate
our approach in different scenarios including large-scale
outdoor maps, as well as small-scale indoor environments.

II. RELATED WORK

A popular approach to modeling environments in 3D is
to use a grid of cubic volumes of equal size (voxels) to
discretize the mapped area. Roth-Tabak and Jain [15] as
well as Moravec [10] presented early works using such a
representation. A major drawback of rigid grids is their large
memory requirement. The grid map needs to be initialized
so that it is at least as big as the bounding box of the mapped
area, regardless of the actual distribution of map cells in the
volume. In large-scale outdoor scenarios or when there is the
need for �ne resolutions, the memory consumption becomes
prohibitive. Furthermore, the extent of the mapped area needs
to be known beforehand.

A discretization of the environment can be avoided by
using point clouds. In such maps, the endpoints returned by
range sensors such as laser range �nders or stereo cameras
are used to model the occupied space in the environment.
Point clouds have been used in several 3D SLAM systems
such as [2], [12]. The drawbacks of this method are that
neither free space nor unknown areas are modeled and that
sensor noise and dynamic objects cannot directly be dealt
with. Thus, point clouds are only suitable for high precision
sensors. Furthermore, the memory consumption of this rep-
resentation increases with the number of measurements. This
is problematic, as there is no upper bound.

If certain assumptions about the mapped area can be made,
2.5D maps are suf�cient to model the environment. Typically,
a 2D grid is used to store the measured height for each
cell. In its most basic form, this results in an elevation map
where the map stores exactly one value per cell [7]. One
approach in which such maps have been demonstrated to be
suf�cient is the outdoor terrain navigation method described
in [6]. In fact, in most outdoor settings, only one level for
driving the vehicle exists. By ignoring all objects higher than
the vehicle, an elevation map can be used for navigation.
Elevation maps, however, are limited to one surface and are

not able to model bridges, underpasses, tunnels, or multi-
level buildings. This strict assumption can be relaxed by
allowing multiple surfaces per cell [19] or by using classes
of cells which correspond to different types of structure [5].
A general drawback of most 2.5D maps is the fact that
they cannot store free or unknown areas in a volumetric
way, which limits their use for localization or exploration.
A related approach was proposed by Ryde and Hu [16].
They store a list of occupied voxels for each cell in a 2D
grid. Although this representation is volumetric it does not
differentiate between free and unknown volumes.

Tree-based representations such as octrees have been used
in several previous approaches. They avoid one of the main
shortcomings of grid structures by delaying the initialization
of map volumes until measurements need to be integrated.
In this way, the extent of the mapped environment does
not need to be known beforehand. If inner nodes of a
tree are updated properly, the tree can also be used as a
multi-resolution representation since it can be cut at any
level to obtain a coarser subdivision. The use of octrees
for modeling was originally proposed by Meagher [9]. Early
works mainly focused on modeling one boolean property
such as occupancy [20]. Payeuret al. [14] used octrees to
adapt occupancy grid mapping from 2D to 3D and thereby
introduced a probabilistic way of modeling occupied and
free space. A similar approach was used in [4] and [13]. In
contrast to the approach presented in this paper, however, the
authors did not explicitly address the problems of memory
consumption or over-con�dence in the map.

An octree-based 3D map representation was also proposed
by Fair�eld et al. [3]. Their map structure calledDeferred
Reference Counting Octreeis designed to allow for ef�cient
map updates and for copying, especially in the context of
particle �lter SLAM. In contrast to our approach, lossless
compression of trees is not described. Instead, a lossy
maximum-likelihood compression is performed periodically.
Furthermore, the problem of overcon�dent maps and multi-
resolution queries are not addressed.

Yguel et al. [22] presented a 3D map based on the Haar
wavelet data structure. This representation is also multi-
resolution and probabilistic. However, the authors did not
evaluate applications to 3D modeling in-depth. In their
evaluation, unknown areas are not modeled and only a single
simulated 3D dataset is used. Whether this map structure is
as memory-ef�cient as octrees is hard to assess.

Finally, to the best of our knowledge, no implementation
of a 3D mapping system which meets the requirements
speci�ed in the introduction is freely available.

III. O CTOMAP MAPPING FRAMEWORK

The approach proposed in this paper uses a tree-based
representation to offer maximum �exibility with regard to
the mapped area and resolution. It performs a probabilistic
occupancy estimation to ensure updatability and to cope with
sensor noise. Furthermore, a lossless compression method
ensures the compactness of the resulting models.
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Fig. 2. Example of an octree storing free (shaded white) and occupied
(black) cells (a), the corresponding tree representation (b), and the corre-
sponding bitstream for compact storage in a �le (c). The complete octree
structure can be stored using only six bytes, 2 bits per childof a node.

Fig. 3. By limiting the depth of a query, multiple resolutions ofthe
same map can be obtained at any time. The occupied cells are displayed in
resolutions 0.08 m, 0.64 , and 1.28 m.

A. Octrees

An octree is a hierarchical data structure for spatial subdi-
vision in 3D [9], [20]. Each node in an octree represents the
space contained in a cubic volume, usually called a voxel.
This volume is recursively subdivided into eight subvolumes
until a given minimum voxel size is reached, as illustrated in
Fig. 2. This minimum voxel size determines the resolution of
the octree. Since an octree is a hierarchical data structure, the
tree can be cut at any level to obtain a coarser subdivision.
An example of an octree map queried for occupied voxels
at several depths is shown in Fig. 3.

In its most basic form, octrees can be used to model a
boolean property. In the context of robotic mapping, this
is usually the occupancy of a volume. If a certain volume
is measured as occupied, the corresponding node in the
octree is initialized. Any uninitialized node could be freeor
unknown in this boolean setting. To resolve this ambiguity,
free cells can be explicitly represented as free nodes in
the tree. Subvolumes which are not initialized implicitly
model unknown areas. An illustration of a laser scan and
the corresponding octree map can be seen in Fig. 4. Using
boolean occupancy states (orlabels) allows for compact
representations of the octree: If all children of a node are
occupied (or all are free) they can be pruned. This leads to
a substantial reduction in the number of nodes that need to
be maintained in the tree.

In robotic systems, one typically has to cope with sensor
noise and temporarily or permanently changing environ-

Fig. 4. A single 3D scan of the corridor dataset recorded witha tilting
scanner (left) is converted to a maximum-likelihood map (right). Free cells
are shown in white, occupied cells in black.

ments. In such cases, a discrete occupancy label will not be
suf�cient to perform sensor fusion. Instead, occupancy hasto
be modeled probabilistically. Occupancy grid mapping [11]
can be used to represent occupancy as a binary random
variable. However, such a probabilistic model lacks the
possibility of lossless compression by pruning.

The approach presented in this paper offers a means of
combining the compactness of octrees that use discrete labels
with the updatability and �exibility of probabilistic modeling
as we will discuss in Sec. III-C.

B. Sensor Fusion

Sensor readings are integrated using occupancy grid map-
ping as introduced by Moravec and Elfes [11]. The proba-
bility P(n j z1:t ) of a leaf noden being occupied given the
sensor measurementsz1:t is estimated according to

P(n j z1:t ) = (1)
�
1 +

1 � P(n j zt )
P(n j zt )

1 � P(n j z1:t � 1)
P(n j z1:t � 1)

P(n)
1 � P(n)

� � 1

:

The inverse sensor modelP(n j zt ) is speci�c to the
sensor used for mapping. Under the common assumption of
a uniform prior (P(n) = 0 :5) and by using thelogOdds(L)
notation, Eq. 1 can be simpli�ed to

L(n j z1:t ) = L( n j z1:t � 1) + L( n j zt ): (2)

Note that logOdds values can be directly converted into
probabilities and vice versa [11]. ThelogOdds formulation
typically allows for faster updates in case of precomputed
sensor models.

As we stated in the introduction, we require the map to
remain updatable in order to react to temporary or permanent
changes in the environment. From Eq. (2) it is evident,
however, that any change in the state of a node requires
as many observation as were integrated to de�ne its current
state. To overcome this overcon�dence in the map, Yguelet
al. [21] propose aclamping update policy:

L(n j z1:t ) = (3)

max (min (L ( n j z1:t � 1) + L ( n j zt ) ; lmax) ; lmin)

with the upper and lower boundslmax and lmin. Applying
the clamping update policy in our approach ensures that the



con�dence in the map remains bounded. As a consequence
the model of the environment remains updatable.

Probabilistic updates are performed for the leaf nodes
only. To obtain a multi-resolution map, however, inner nodes
have to be updated as well. To determine the occupancy
probability of a noden given its eight subvolumesni , several
strategies could be pursued [8]. Depending on the application
at hand, either the mean occupancy

�l (n) =
1
8

8X

i =1

L(ni ) (4)

or the maximum occupancy

l̂(n) = max
i

L(ni ) (5)

could be used. Here,L(n) returns the currentlogOdds
occupancy value of a noden. Using l̂(n) to update inner
nodes can be regarded as a conservative strategy which is
well suited for robot navigation. By assuming a volume to
be occupied if parts of it have been measured occupied,
collision-free paths can be planned at coarser resolutionsand
thus computationally ef�cient. For this reason it is used inour
system. Note that in an even more conservative setting,L(n)
can be de�ned to return a positive occupancy probability for
unknown cells as well.

C. Tree Compression

Whenever thelogOdds value of a node reaches either
the thresholdlmin or lmax, we consider the nodestable in
our approach. Intuitively, stable nodes have been measured
free or occupied with high con�dence. We combine the
advantages of probabilistic occupancy mapping and octrees
that use discrete labels by pruning stable parts of the tree.If
all children of a node are stable leafs with the same occu-
pancy state, then the children can be pruned. Should future
measurements be integrated that contradict the node's state,
its children will be re-generated. Applying this compression
does not lead to a loss of information in the probabilistic
model. It does, however, lead to a considerable reduction in
the number of nodes as we will show in the experiments.

D. Memory-Ef�cient Implementation

In general, octree nodes need to maintain an ordered list
of its children. This can be naively achieved by using eight
pointers per node. If sparse data are modeled, the memory
requirement of those pointers (8� 4byte= 32 byte on a 32 bit
architecture) will lead to a signi�cant memory overhead [20].
With an implementation trick, however, one can overcome
this by using only one pointer per node that points to an array
of eight pointers. This array is only allocated if children need
to be initialized.

E. Map File Generation

Whenever maps need to be stored for later usage or have
to be exchanged between robots, a compact representation is
required in order to minimize the consumption of disk space
and communication bandwidth.

The most compact �les can be generated whenever a
maximum likelihood estimate of the map is suf�cient for
the task at hand. In this case the per-node probabilities
are discarded. As motivated above, volumes in which no
information has been recorded can be of special interest
in robotic systems, for example, during exploration. For
this reason, we explicitly differentiate between free and
unknown areas and encode nodes as either occupied, free,
unknown, or as inner nodes in our map �les. Using these
labels, octree maps can be encoded as a compact bit stream.
Each node is represented by the eight labels of its children.
Beginning at the root node, each child that is not a leaf
is recursively added to the bit stream. Leaf nodes do not
have to be added since they can be reconstructed from their
label during the decoding process. Fig. 2(c) illustrates the
bitstream encoding. Each row represents one node with the
upper row corresponding to the root node. The lower row
only contains leafs so no further nodes are added.

In this maximum likelihood representation, each node
occupies 16 bits of memory, 2 bits per child. In our exper-
iments, �le sizes never exceeded 2 MB even for fairly large
outdoor environments with a size of292m � 167m � 28m
(see Sec. IV-C).

There exist applications, in which all information in a map
needs to be stored and maintained. This often requires the
use of hard disk space as secondary memory, where maps
are temporarily saved to disk until they need to be accessed
again. Another important demand may be the storage of
additional node data such as terrain information which would
be lost in a maximum likelihood encoding as introduced
above. In these cases, we encode nodes by storing their data
(occupancy, terrain data, etc.) and eight bits per node which
specify whether a child node exists. This, however, resultsin
considerably larger �les as we will show in the experiments.

IV. EXPERIMENTS

The approach presented in this paper was evaluated us-
ing several real world datasets as well as simulated ones.
The experiments are designed to verify that the proposed
representation is meeting the requirements formulated in
the introduction. More speci�cally, we demonstrate that
our approach is able to adequately model various types of
environments and that it is an updatable and �exible map
structure which can be compactly stored.

A. Sensor Model for Laser Range Data

In general, the map representation introduced in the pre-
vious section can be used in conjunction with any kind
of distance sensor. Since our real-world datasets have been
acquired using laser range �nders (SICK LMS and Hokuyo
30LX), we employ a beam-based inverse sensor model. To
ef�ciently determine the cells which need to be updated,
a ray-casting operation is performed using a 3D variant of
the Bresenham algorithm [1]. Volumes along the beam are
updated as described in Sec. III-B using the following inverse



Fig. 5. A simulated noise-free 3D laser scan (left) is integrated into
our 3D map structure. Sensor sweeps at shallow angles lead to undesired
discretization effects (center). By updating each volume atmost once, the
map correctly represents the environment (right). For clarity, only occupied
cells are shown.

Fig. 6. A tabletop in real world (left) and visualized as 3D map(right).

sensor model:

L(n j zt ) =

(
locc ; if ray is re�ected within volume
l free ; if ray traversed volume

(6)

The occupancy probability of all volumes is initialized to the
uniform prior of P(n) = 0 :5. Throughout our experiments,
we usedlogOdds values of locc = 0 :85 and l free = � 0:4,
corresponding to probabilities of0:7 and 0:4 for occupied
and free volumes, respectively. The clamping thresholds are
set to lmin = � 2 and lmax = 3 :5, corresponding to the
probabilities of0:12 and0:97. By lowering these thresholds,
a stronger compression can be achieved but this obviously
trades off map con�dence for compactness.

Discretization effects of the ray-casting operation can lead
to undesired results when mapping environments in 3D using
a sweeping sensor. During a sensor sweep over �at surfaces
at a shallow angle, volumes measured occupied in one 2D
scan may be marked as traversed volumes in the ray-casting
of following scans. This effect usually creates holes, e.g., in
the �oor and is illustrated using a simulated, noise-free 3D
scan in Fig. 5. To overcome this problem, we treat a complete
3D scan as one measurement and update each map volume at
most once. By taking care that volumes measured occupied
are preserved within one 3D measurement, the described
effect can be prevented.

B. Full 3D models

In this experiment, we demonstrate the ability of our
approach to model real-world environments. A variety of
different datasets is used.

Two indoor datasets were recorded using a Pioneer2 AT
platform equipped with a SICK LMS laser range �nder on a
pan-tilt unit. Odometry errors were corrected using 3D scan
matching. The �rst dataset was recorded in a small-scale
indoor environment designed as a test-bed for humanoid
robots (see Fig. 7). The environment features a staircase

Fig. 7. A small-scale indoor environment with two �oors connected by a
staircase in real world (left) and visualized as 3D map (right).

Fig. 8. 3D map of the corridor of building 079 on the Freiburg campus,
as seen from the top. The structure of the adjacent rooms has been partially
observed through the glass doors (size of the scene:43:8 m � 18:2 m �
3:3 m).

and two different levels. The data set consists of eleven
3D measurements recorded at different poses. Considerable
interpolation noise of the laser scanner at sharp edges exists
in the individual scans. The second dataset was recorded in
a corridor of building 079 at the Freiburg campus. The robot
traversed the corridor three times and the resulting dataset
consists of 66 scans.

A further indoor data set was recorded using a Hokuyo
30LX laser range �nder on a pan-tilt unit (see Fig. 6). Here,
the environment consists of a tabletop with several objects,
which represents a typical environment for a manipulation
task.

A fairly large outdoor dataset was recorded at the com-
puter science campus in Freiburg1. It consists of 81 dense
3D scans covering an area of292m � 167m.

In addition, we use laser range data of theNew College
data set [18]. This data was recorded in a large-scale outdoor
environment with two laser scanners sweeping to the left
and right side of the robot as it advances. For this dataset,
an optimized estimate of the robot's trajectory generated by
visual odometry was used [17].

A visualization of the resulting models can be seen in
Fig. 6, 7, 8, and 9. Note that the free space is modeled but
not shown in the �gures.

C. Memory Consumption

In this experiment, we evaluate the memory consumption
of our approach. Several datasets are processed at various

1Courtesy of B. Steder and R. Kümmerle, available athttp://ais.
informatik.uni-freiburg.de/projects/datasets/fr360/



Fig. 9. Resulting octree maps of two outdoor environments at 0.2 m resolution. For clarity, only occupied volumes are shown with height visualized by a
color (gray scale) coding. Top:Freiburg campus(size of the scene:292m� 167m� 28m), bottom:New College(size of the scene:250m� 161m� 33m).

tree resolutions. We analyze the memory usage of our repre-
sentation with and without performing lossless compression.
For comparison, we also give the amount of memory that
would be required by a minimal full 3D grid which is
initialized linearly in memory. Each map is furthermore
written to disk using the full probabilisitc model and the
binary format described in Sec. III-E, and the resulting �le
size is given.

The memory usage for exemplary resolutions are dis-
played in Table I. It can be seen that high compression ratios
can be achieved especially in large outdoor environments.
Here, pruning will merge considerable amounts of free space
volumes. On the other hand, the map structure is also able
to model �ne-graded indoor environments with moderate
memory requirements. In very con�ned spaces, an optimally
aligned 3D grid may take less memory than an uncompressed
mapping octree. However, this effect is diminished as soon

as compression techniques are used.
For the 079 corridor dataset we also analyze the evolution

of memory consumption during mapping (Fig. 10, left). The
robot explored new areas up to scan number 22 and from
scan number 39 to 44. In the remaining time, previously
mapped areas were revisited where memory usage remained
nearly constant. A slight increase can still be noticed which is
due to new information gathered by scanning from different
viewpoints.

As expected, memory usage increases exponentially with
the tree resolution. Figure 10 (right) illustrates this using
the Freiburg outdoor dataset. Please note that a logarithmic
scaling is used in the plot.

Map �les generated using the bitstream encoding are
comparably small. For example, the visualization of the
Freiburg outdoor dataset given in Fig. 9 uses 816 kB as
a PNG �le while the full 3D model including free and



TABLE I

MEMORY CONSUMPTION OF VARIOUS3D DATASETS

Map dataset Mapped Resolution Memory consumption [MB] File size [MB]
area [m3 ] [m] Full grid No compression Lossless compressionAll data Binary

Small scale indoor 3:5 � 5:2 � 1:7 0.05 1.03 1.91 1.38 0.54 0.02

FR-079 corridor 43:8 � 18:2 � 3:3 0.05 80.54 73.64 41.70 15.80 0.67
0.1 10.42 10.90 7.25 2.71 0.14

Freiburg outdoor 292 � 167 � 28 0.20 654.42 188.09 130.39 49.75 2.00
0.80 10.96 4.56 4.13 1.53 0.08

New College (Epoch C) 250 � 161 � 33 0.20 637.48 91.43 50.70 18.71 0.99
0.80 10.21 2.35 1.81 0.64 0.05
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Fig. 10. Left: Evolution of the memory usage while mapping the FR-079 corridor dataset (resolution 0.05 m). Right: Effect of resolution on memory
usage of the Freiburg outdoor dataset. Note that a logarithmic scaling is used.
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unknown areas requires 2 MB.
Table I shows the �le sizes of the binary maximum likeli-

hood map (denoted with “Binary”) and the full probabilistic
model (“All data”). Note that map �les can be compressed
even further by using standard �le compression methods.

D. Runtimes

In this experiment, we analyze the time required to in-
tegrate range data using the proposed method. This time
depends on the map resolution and the length of the beams
that are integrated. We process the FR-079 indoor dataset
with a maximum range of 10 m and the Freiburg campus
dataset. Maps are computed at several resolutions. The

average insert times for 100,000 beams on a standard CPU
(Intel E8600, 3.3 GHz) are given in Fig. 11.

In our experiments, single 3D scans usually consist of
about 90,000 non-maxrange measurements and the time to
acquire the data using a SICK LMS on a pan-tilt unit is
about 6 s. Typically, such a scan can be integrated into the
map in less than one second. Even with long measurement
beams and high map resolutions, updating the map will not
take longer than a few seconds.

V. CONCLUSION

In this paper, we presented an approach for the 3D
modeling of environments that is relevant for several robotic
tasks including robot mapping, navigation, and mobile ma-
nipulation. It builds upon a tree-based map structure which
facilitates multi-resolution map queries and leads to a com-
pact memory representation. Using probabilistic occupancy
estimation, our approach is able to represent full 3D models
including free and unknown areas. The proposed approach
uses a bounded per-volume con�dence. This allows for an
lossless compression scheme which substantially reduces
memory usage. We evaluated our approach using both real-
world and simulated data sets. The results demonstrate that
our approach is able to model the environment in an accurate
way and at the same time minimizes memory requirements.

We implemented the described system and made the
implementation available as an open source C++ library to
facilitate future developments in the context of 3D mapping.
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