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Abstract

Performing manipulation tasks interactively in real environments requires a high degree of
accuracy and stability. At the same time, when one cannot assume afully deterministic
and static environment, one must endow the robot with the ability toreact rapidly to
sudden changes in the environment. These considerations make the task of reach and grasp
di�cult to deal with. We follow a programming by demonstration (PbD) approach to the
problem and take inspiration from the way humans adapt their reachand grasp motionswhen
perturbed. This is in sharp contrast to previous work in PbD that uses unperturbed motions
for training the system and then applies perturbation solely during the testing phase. In this
work, we record the kinematics of arm and �ngers of human subjects during unperturbed and
perturbed reach and grasp motions. In the perturbed demonstrations, the target's location
is changed suddenly after the onset of the motion. Data show a strong coupling between the
hand transport and �nger motions. We hypothesize that this coupling enables the subject
to seamlessly and rapidly adapt the �nger motion in coordination with the hand posture.
To endow our robot with this competence, we develop aCoupled Dynamical Systembased
controller, whereby two dynamical systems driving the hand and �nger motions are coupled.
This o�ers a compact encoding for reach-to-grasp motions that ensures fast adaptation with
zero latency for re-planning. We show in simulation and on the real iCub robot that this
coupling ensures smooth and \human-like" motions. We demonstrate the performance of
our model under spatial, temporal and grasp type perturbationswhich show that reaching
the target with coordinated hand-arm motionis necessary for the success of the task.

Keywords: Grasping, Hand Arm Coordination, Fast Perturbations, Manipulation
Planning, Programming by Demonstration

1. Introduction

Planning and control of constrained grasping motions has often been studied as two
separate problems in which one �rst generates the arm motion [1, 2] and then shapes the
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Figure 1: (a) - Experimental setup to record human behavior under perturbations. On screen target selector
is used to create a sudden change in the target location for reaching. (b) - Motion of the �ngers as seen from
a high speed camera @ 100 fps. Note the decrease in the joint angle values (re-opening of �ngers) starting
at the onset of perturbation.

hand to grasp stably the targeted object [3, 4]. The sheer complexity of each of these
two problems when controlling high dimensional arm-hand systems has discouraged the use
of a single coherent framework for carrying out both tasks simultaneously. In this work,
we advocate the use of a single framework to control reach and grasp motion when the
task requires very fast adaptation of the motion. We consider theproblem of on-the-
y
replanning reach and grasp motion for enabling adaption to changesin the position, size or
type of object to be grasped. This requires the ability for fast and
exible re-planning.

One widely desired property when designing a robot controller is robustness, i.e. the
ability to robustly recover from perturbations. In reach-to-grasp tasks, perturbations may
be of the following types: a) displacement of the robot end-e�ector and/or the target (spatial
perturbations), b) delays in the task execution due to random factors such as friction in the
gears or delays in the underlying controller of the robot (temporalPerturbations), c) change
in the target object forcing a change in the type of the grasp required. In the context of
controlling for reach and grasp tasks, this problem has been addressed primarily by designing
a stable controller (ensured to stop at the target) for both reach and grasp components of
motion. Many di�erent ways have been o�ered to designing task-speci�c controllers with
minimum uncertainties and deviations from the intended trajectory. One drawback of such
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approaches is that they assume that the trajectory to track is known before hand. It is
however not always desirable to return to the original desired trajectory as the path to
get there may be unfeasible, especially when a perturbation sent usfar from the originally
planned trajectory. More recent approaches have advocated the use of dynamical systems
as a natural means of embedding sets of feasible trajectories. This o�ers great robustness in
the face of perturbations, as a new desired trajectory can be recomputed on the 
y with no
need to re-plan [5{ 7]. We follow this trend and extend our previous works [8, 9] on learning
a motor control law using time-invariant dynamical systems. Such acontrol law generates
trajectories that are asymptotically stable at a single attractor. In this paper, we extend
this work to enable coupling across two such dynamical systems forcontrolling reach and
grasp motions in synchrony. Controlling for such coupled dynamicalsystems entails more
complexity than controlling using two independent control laws to ensure satisfaction of
convergence constraints and correlations between the two processes [10{ 13].

We follow a Programming by Demonstration (PbD) approach [14] and investigate how
we can take inspiration from the way humans react when perturbedand learn motor control
laws from such examples. This departs from the usual approachesin PbD that usually use
demonstrations ofunperturbedmotions.

A number of studies of the way humans, and other animals, controlreach-and-grasp
tasks [10, 15, 16] have established that the dynamics of arm and �nger movements follow
a particular pattern of coordination, whereby the �ngers start opening (preshape) for the
�nal posture at about half of the reaching cycle motion. Humans and other animals adapt
both the timing of hand transport and the size of the �nger aperture to the object's size and
location. When perturbed, humans adapt these two variables seamlessly and in synchrony
[17, 18]. In [19], we showed a strong coupling between the dynamics of �nger aperture and
the hand velocity. Finger aperture is composed of a biphasic course, i.e. a short and wide
opening after hand peak velocity is followed by a slow closure phase. In this paper, we revisit
these observations to derive precise measurement of the correlation between hand transport
and �ngers preshape, which we then use to determine speci�c parameters of our model of
coupled dynamical systems across these two motor programs.

This paper is divided as follows. Section2 reviews the literature related with the pre-
sented work: imitation learning, manipulation planning and biological evidences of reach-
grasp coupling. Section3 starts with a short recap of the background of Dynamical Systems
(DS), their estimation using GMMs and performing regression. We give a formal de�nition
of the Coupled Dynamical System (CDS) model, explain the model construction process
and give the algorithm for regression. In Section4, we present the experimental setup used
to learn from perturbed human demonstrations. We validate our approach by presenting
a series of experiments on the iCub simulator as well as the real robot. We show that the
reach-grasp behavior is reproduced while respecting the correlations and couplings learned
during the demonstrations and that it is critical for the success ofthe overall task. We also
show that the post-perturbation re-planning is quick and enables very fast response from
the robot.
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2. Related Work

The presented model relates to di�erent �elds of work. It draws inspiration from neuro-
physiological studies of human reach-to-grasp motion, exploits the current techniques from
imitation learning to add novel contribution in the �eld of manipulation planning and con-
trol. In this section, we review the relevant literature in each of these �elds.

2.1. Manipulation Planning

The classical approach in robotics for reaching to grasp objects has been to divide the
overall problem into two sub-problems, where one �rst reaches for and then grasps the
objects [1, 20, 21]. Although both the issues of reaching to a pre-grasp pose and formation
of grasp around arbitrary objects are intensively studied, very few [22{ 24] have looked into
combining the two so as to have a uni�ed reach-grasp system.

Most manipulation planners typically plan paths in the con�guration space of the robot
using graph based techniques. Very powerful methods such as those based on probabilistic
roadmap and its variants [25, 26] use a C-space description of the environment and graph
based methods for search. Another approach to the same problem has been adopted by us-
ing various control schemes in conjunction with o�ine grasp planners [21] or visual tracking
systems [27]. A synergistic combination of grasp planning, visual tracking and arm trajec-
tory generation is presented in [28]. LaValle and Ku�ner [ 29] proposed RRT's as a faster
alternative to manipulation planning problems, provided the existence of an e�cient inverse
kinematic (IK) solver. RRT based methods [1] are currently the fastest online planners due
to their e�cient searching ability. The reported planning times are of the order of 100 ms
for single arm reaching tasks in the absence of any obstacles [20]. While this is certainly
very quick, graph based methods lose to take into account the dynamic constraints of the
task.

It remains a challenge to design planning algorithms for dynamic tasksunder quick
perturbations. Moreover, in such cases, re-planning upon perturbation must not take more
than a few milliseconds. These are the type of problems we address here. We take inspiration
from human studies to understand how humans embed correlationsbetween arm and �nger
motion to ensure robust response to such fast perturbations. We show that retaining these
correlations between the reach and grasp motions is critical to thesuccess of the tasks.

2.2. Biological Evidences

The concept of coupling between the reach and grasp motions is inspired by extensive
evidence in neuro-physiological studies [10, 13, 30{ 35]. The most frequently reported mech-
anism suggests a parallel, but time-coupled evolution of the reach and grasp motions with
synchronized termination. Attempts at quantifying this process ina way that may be usable
for robot control are few. Glke et al. [36], Bae and Armstrong [37] showed that the �nger
motion during reach to grasp tasks could be described by a simple polynomial function of
time, while Ulloa and Bullock [38] modeled the covariation of the arm and the �nger mo-
tion. Interestingly, these authors also report on an involuntary reopening of the �ngers upon
perturbation of the target location; an observation which we will revisit in this paper.
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A number of models have been developed to simulate the �nger-handcoupling, so as to
account for the known coordinated pattern of hand-arm motions. The Ho�-Arbib model
[39] generates a heuristic estimate of the transport time based on the reaching distance and
object size and uses it to compute the opening and closing times of the hand. Since the
control scheme presented in their approach was time dependent and the temporal coupling
parameters decided prior to the onset of movement, this model didnot guarantee handling
of temporal or spatial perturbations. Oztop and Arbib [40] argued in their hand state
hypothesisthat during human reach-grasp motion control, the most appropriate feedback
is a 7 dimensional vector, including pose of the hand w.r.t the target,hand aperture and
thumb adduction/abduction. In the Haggard-Wing model [41], both processes of transport
and aperture control have access to each other's spatial state. The variance of hand and
�nger joint angles is used to set the corresponding control gains,whereas computation of the
correlation across the two is used to implement the spatial coupling.The time independency
of this model proved to be an elegant way to handle temporal perturbations. A neural
network based model presented by Ulloa and Bullock [42] ensured continuous coupling and
e�cient handling of perturbations. They assumed thevector integration to end point(VITE)
model [43] as a basis for task dynamics.

The model we propose here speci�cally exploits the principle of spatial coupling between
the palm and �nger motion. It ensures that the motion reproducedby the robot exhibits
hand-arm coupling and respects termination constraints similar to what are found in natural
human motion.

2.3. Imitation Learning
Learning how to perform a task by observing demonstrations froman experienced agent

has been explored extensively under di�erent frameworks. Classical means of encoding the
task information are based on spline or polynomial decomposition andaveraging [44, 45].
These have been shown to be very fast trajectory generators,useful for tasks like catch-
ing moving objects. A di�erent body of work advocates non-linear stochastic regression
techniques in order to represent the tasks and regenerate motion in a generalized setting
[46]. These methods allow systematical treatment of uncertainty by assuming data noise
and henceestimate the trajectories as a set of random variables. The regression assumes a
model for the underlying process and learns its parameters via machine learning techniques.
Subsequently, multiple works under the PbD framework [2, 8, 47] have shown that this
problem can be handled elegantly by using the dynamical systems (DS) approach. Using
DS to represent motion removes the explicit time dependency from the model. As a result,
transitions between the states during the execution of a task depend solely on the current
state of the robot and the environment1. However, the removal of time dependency is in-
troduced at the cost of non-trivial stability of the models. The states of a process evolving
autonomously under the in
uence of a DS may diverge away from thegoal if initialized out-
side the basin of attraction of the equilibrium point. Eppner et al. [48] presented a dynamic

1Even in a DS formulation, time dependency is present but only implicitly in the form of time derivatives
of the state variables.
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Bayesian networks based approach to learn generalized relations between the world and the
robot/demonstrator. While generalizing the task reproduction over di�erent spatial setups,
this framework also allows to include constraints not captured fromthe demonstrations,
such as obstacle avoidance. Ijspeert et al. [2] in their dynamic movement primitives(DMP)
formulation, augment the dynamics learned from motion data with a stable linear dynamics
which would take precedence as the state reaches close to the goal. In our previous work [9],
it was shown that formulating the problem of �tting data to the Gaussian Mixture Model
as a non-linear optimization problem under stability constraints ensures global asymptotic
stability of the DS.

Although a large amount of work has been done on learning and improving skills from
observing good examples of successful behavior, very few work has looked into the infor-
mation that can be extracted from the non-canonical demonstrations. In Grollman and
Billard [49], we proposed one way to learn from failed demonstrations. Here,we follow a
complementary road and investigate how one can learn from observing how humans adapt
their motion so as to avoid failure. To the best of our knowledge, thisis the �rst work on
PbD that studies human motion recovery under perturbation. We empirically show - a) the
di�erence in dynamics employed during perturbed and unperturbeddemonstrations and b)
the coupling that exists between the reach and grasp componentswhich ensures successful
task completion. We present a coupled dynamical systems based approach to achieve coor-
dination between hand transport and pre-shape. We show that the DS based formulation
enables our model to react under very fast on-the-
y perturbations without any latency for
re-planning. We validate the model by implementing our method on theiCub simulator as
well as the real robot.

3. Methodology

In this section, we start with a short description of motion encodingusing autonomous
dynamical systems (DS) and explain how Gaussian Mixture Models (GMMs) can be used
to estimate them. We then present an extension of this GMM estimate to allow coupling
across di�erent DS, which we further refer to as Coupled Dynamical System (CDS). A
formal discussion of the Coupled Dynamical System (CDS) model is presented describing the
modeling process and regression algorithm to reproduce the task and a simple 2D example
is included to establish intuitive understanding of the working of the CDS model.

3.1. DS control of reaching

We here brie
y present our previous work on modeling reaching motion through au-
tonomous dynamical systems with a single attractor at the target. For clarity, we reiterate
the encoding presented in [8].

Let � denote the end-e�ector position and_� its velocity. We further assume that the state
of the system evolves in time according to a �rst order autonomousOrdinary Di�erential
Equation (ODE):

_� = f(� ) (1)
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f : Rd 7! Rd is a continuous and continuously di�erentiable function with a single
equilibrium point at the attractor, denoted � � and we have:

lim
t !1

� (t) = 0 (2)

We do not knowf but we are provided with a set ofN demonstrations of the task where
the state vector and its velocities are recorded at particular time intervals, yielding the data
set f � t

n ; _� t
ng8t 2 [0; Tn ]; n 2 [1; N ]. Tn denotes the number of data points in demonstration

n. We assume that this data was generated by our functionf subjected to a white gaussian
noise� and hence we have:

_� = f(� ; � ) + � (3)

Notice that f is now parameterized by the vector� , that represents the parameters of
the model we will use to estimatef.

We build a model-free estimate of the function̂f in two steps. We �rst build a probability
density model of the data by modeling it through a mixture ofK gaussian functions. The
core assumption when representing a task as a gaussian Mixture Model (GMM) is that each
recorded point� (t) from the demonstrations is a sample drawn from the joint distribution:

� � P
�

� ; _� j�
�

=
KX

k=1

� kN (� ; _� ; � k) (4)

with N (� ; � k) = 1p
(2� )2d j � k j

e
1
2 (� � � k )T (� k ) � 1 (� � � k )T

and where� k , � k and � k , are the compo-

nent weights, means and covariances of thek � th gaussian.
Taking then the posterior mean estimate ofP

�
_� j�

�
yields a noise-free estimate of our

underlying function:

_� =
KX

k=1

hk(� )(A k + bk) (5)

where,
Ak = � k

_��
(� k

� )� 1

bk = � k
_�
� Ak � k

�

hk(� ) = � k N (� ;� k )
P K

i =1 � i N (� ;� i )

9
>=

>;
: (6)

To ensure that the resulting function is asymptotically stable at thetarget, we use the
stable estimator of dynamical system(SEDS) approach, see [9] for a complete description.
In short, SEDS determines the set of parameters� that maximizes the likelihood of the
demonstrations being generated by the model, under strict constraints of global asymptotic
stability. Next, we explain how this basic model is exploited to ensure that the hand and
�ngers reach the target even when perturbed. We further showhow it is extended to build an
explicit coupling between hand and �nger motion dynamics to ensure robust and coordinated
reach and grasp.
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3.2. Why Coupling Reach and Grasp?
We are now facing the problem of extending our reaching model presented in the previous

section to allow successful hand-arm coordination when performing reach and grasp. The
scheme presented in our previous works, as explained in previous sub-section, assumes that
the motion is point-to-point in high dimensional space. As a result, the state vector �
converges uniformly and asymptotically to the target. To performreach-grasp tasks, such a
scheme could be exploited in two ways. One could either:

1. Learn two separate and independent DS with state vectors as end-e�ector pose and
�nger con�gurations.

2. Or learn one DS with an extended state vector consisting of degrees of freedom of the
end-e�ector pose as well as �nger con�gurations.

Learning two DS would not be desirable at all since then two sub-systems (transport and
pre-shape) would evolve independently using their respective learned dynamics. Hence,
any perturbation in hand transport would leave the two sub-systems temporally out of
synchronization. This may lead to failure of the overall reach-grasp task even when both
the individual DS will have converged to their respective goal states.

At �rst glance, the second option is more appealing as one could hopeto be able to
learn the correlation between hand and �nger dynamics, which wouldthen ensure that the
temporal constraints between the convergence of transport and hand pre-shape motions will
be retained during reproduction. In practice, good modeling of such an implicit coupling
in high-dimensional system is hard to ensure. The model is as good asthe demonstrations
are. If one is provided with relatively few demonstrations (in PbD onetargets less than
ten demonstrations for the training to be bearable to the trainer), chances are that the
correlations will be poorly rendered, especially when querying the system far away from
the demonstrations. Hence, if the state of the robot is perturbed away from the region of
the state space which was demonstrated, one may not ensure that the two systems will be
properly synchronized. We will establish this by the means of a simulation experiment in
Section4.

We here take an intermediary approach in which two separate DS are�rst learned and
then coupled explicitly. In the context of reach-and-grasp tasks, the two separate DS corre-
spond to the hand transport (dynamics of the end-e�ector motion) and the hand pre-shape
(dynamics of the �nger joint motion). We will assume that the transport process evolves
independently of the �ngers' motions while the instantaneous dynamics followed by the �n-
gers depends on state of the hand. This will result in the desired behavior, namely that the
�ngers will reopen when the object is moved away from the target.Note that the �nger-
hand coupling will be parameterized. We will show in the experiments that this coupling
can be tuned by changing the model parameters to favor either \human-like" motion or fast
adaptive motion to recover from quick perturbations.

3.3. Coupled Dynamical System
In the following subsections, we present the formalism behind the Coupled Dynamical

System (CDS), describing how we learn the model and how we then query the model during
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task execution. To facilitate understanding of the task reproduction using the CDS model,
we illustrate the latter in a 2D example that o�ers a simplistic representation of the high-
dimensional implementation presented in the result section.

3.3.1. CDS model
Let � x 2 R3 denote the cartesian position of the hand and� f 2 Rdf the joint angles of

the �ngers. df denotes the total number of degrees of freedom of the �ngers.The hand
and the �ngers follow separate autonomous DS with associated attractors. For convenience,
we place the attractors at the origin of the frames of reference of both the hand motion
and the �nger motion and hence we have:� �

x = 0 and � �
f = 0. In other words, the hand

motion is expressed in a coordinate frame attached to the object to be grasped, while the
zero of the �nger joint angles is placed at the joint con�guration adopted by the �ngers
when the object is in the grasp. We assume that there is a single grasp con�guration for a
given object. Since the reach and grasp dynamics may vary depending on the object to be
grasped, we will build a separate CDS model for each object considered here. We denote
the set G of all objects for which grasping behaviors are demonstrated.

The following three joint distributions, learned as separate GMMs, combine to form the
CDS model:

1. P
�

� x ; _� x j� g
x

�
: encoding the dynamics of the hand transport

2. P
�
	( � x ); � f j� g

inf

�
: encoding the joint probability distribution of the inferred state of

the �ngers and the current hand position

3. P
�

� f ; _� f j� g
f

�
: encoding the dynamics of the �nger motion

8g 2 G. Here, 	 : R3 7! R denotes thecoupling function which is a monotonic function of
� x satisfying:

lim
� x ! 0

	( � x) = 0 : (7)

� g
x , � g

f and � g
inf denote the parameter vectors of the GMMs encoding the hand-transport

dynamics, �nger motion dynamics and the inference model respectively.
The distributions P

�
� x ; _� x j� g

x

�
and P

�
� f ; _� f j� g

f

�
that represent an estimate of the dy-

namics of the hand and �nger motion respectively are learned using the same procedure as
described in Section3.1. To recall, each density is modeled through a mixture of gaussian
functions. As explained in Section3.1, in order to ensure that the resulting mixture is
asymptotically stable at the attractor (here the origin of each system), we use the SEDS
learning algorithm Khansari-Zadeh and Billard [9]. Note that SEDS allows to only learn
models where the input and output variables have the same dimensions. Since the variables
of the distribution P

�
	( � x); � f j� g

inf

�
have not the same dimension, we learned this distri-

bution through a variant of SEDS where we maximize the likelihood of the model under the
constraint:

lim
x! 0

E [� f jx ] = 0: (8)
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Figure 2: Task execution using CDS model. Blue region shows the three Gaussian Mixture Models which
form the full CDS model. Green region shows the sub-system which controls the dynamics of the hand
transport. Magenta region shows the sub-system controlling �nger motion, while being in
uenced by the
state of the hand transport sub-system. Coupling is ensured by passing selective state information in the
form of 	( � x ) as shown in red.

3.3.2. Reproduction
While reproducing the task, the model essentially works in three phases: Update hand

position ! Infer �nger joints ! Increment �nger joints . The palm position is updated
independently at every time step and its current value is used to modulate the dynamics of
the �nger motion through the coupling mechanism. Figure2 shows this 
ow of information
across the sub-systems and the robot. Such a scheme is desired since it ensures that any
perturbation is re
ected appropriately in both sub-systems.

The process starts by generating a velocity command for the handtransport sub-system
and increments its state by one time step. 	(� x) transforms its current state which is
fed to the inference model that calculates the desired state of the �nger joint angles by
conditioning the learned joint distribution. The velocity to drive the � nger joints from
their current state to the inferred (desired) state is generatedby gaussian mixture regression
(GMR) conditioned on the error between the two. The �ngers reach a new state and the
cycle is repeated until convergence. Algorithm1 explains the complete reproduction process
in pseudo-code. Note that the coupling function 	(� x) also acts as a phase variable which
updates itself at each time step and, in the event of a perturbation, will command the �ngers
to re-adjust so as to maintain the same correlations between the sub-system states as learned
from the demonstrations. Two other parameters governing the coupled behavior are scalars
�; � > 0. Qualitatively speaking, they respectively control the speed andamplitude of the
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Algorithm 1 Task Execution using CDS
Input: � x(0); � f (0); � g

x ; � g
inf ; � g

f ; � ; � ; � t; �
Set t = 0
repeat:

if perturbation then
update g 2 G

end if
Update Hand Position: _� x (t) � P

�
_� x j� x ; � g

x

�

� x (t + 1) = � x (t) + _� x(t)� t
Infer Finger Joints: ~� f (t) � P

�
� f j	 ( � x) ; � g

inf

�

Update Finger Joints: _� f (t) � P
�

_� f j�
�

� f � ~� f

�
; � g

f

�

� f (t + 1) = � f (t) + � _� f (t)� t
t  t + 1

until: Convergence
�

k _� f (t)k < � and k _� x(t)k < �
�

robot's reaction under perturbations.
As described in Section3.1, learning using SEDS ensures that the model for reaching

and the model for grasping are both stable at their respective attractors. We however need
now to verify that when one combines the two models using CDS, the resulting model is
stable at the same attractors.

De�nition. A CDS model is globally asymptotically stable at the attractors � �
x , � �

f if by
starting from any given initial conditions � x (0), � f (0) and coupling parameters�; � 2 R the
following conditions hold:

lim
t !1

� x (t) = � �
x (9a)

lim
t !1

� f (t) = � �
f (9b)

Such a property is fundamental to ensure that the CDS model will result in a reach and grasp
motion terminating at the desired target. Most importantly, showing that the attractors for
hand and �ngers are also globally asymptotically stable will ensure that this model bene�ts
from the same robustness to perturbation as described for the simple reaching model in
Section3.1. SeeAppendix A for the proof of stability.

3.3.3. Minimal Example
To establish an intuitive understanding, we instantiate the CDS model as a 2D repre-

sentative example of actual high-dimensional reach-grasp tasks. We consider 1-D cartesian
position � x of the end-e�ector and 1 �nger joint angle � f , both expressed with respect to
their respective goal states so that they converge to the origin.In this way, the full 
edged
grasping task is just a higher dimensional version of this case by considering 3-dimensional
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Figure 3: GMMs which combine to form the CDS model for 2D example. (a) shows the human demon-
strations. Large number of datapoints around the end of trajectories depict very small velocities. (b)
shows the GMM encoding the velocity distribution conditioned on the position of reaching motion (� x ), (c)
shows the GMM encoding the desired value of� f (i.e. ~� f ) given the current value of � x as seen during the
demonstrations. (d) shows the GMM encoding the dynamic model for the �nger pre-shape.

cartesian position instead of� x and all joint angles (or eigen-grasps) of the �ngers instead
of � f .

Under the given setting, typical demonstrations of reach-grasptask are as shown in
Figure 3(a), where the reaching motion converges slightly faster than the �nger curl. We
extract the velocity information at each recorded point by �nite di� erencing and build the
following models from the resulting data:P

�
� x ; _� x j� x

�
, P (� x ; � f j� inf ) and P

�
� f ; _� f j� f

�
.

The resulting mixtures for each of the models is shown in Figure3. For reproducing the task,
instead of using the earlier approach of [8] where the system evolves under the velocities

computed asE
h
( _� x ; _� f ) j(� x ; � f )

i
, we proceed as in Algorithm1. Figure 4 shows reproduction

of the task in the (� x ; � f ) space overlaid on the demonstrations. It clearly shows that a
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Figure 5: Variation of obtained trajectories with � and � . Vertical red line shows the instant of perturbation
when the target is suddenly pushed away along positive� x direction. Negative velocities are generated in
� f in order to track ~� f . Speed of retracting is proportional to � (left ) and amplitude is proportional to �
(right ).

perturbation in � x creates an e�ect in� f , i.e., generating a negative velocity, the magnitude
of which is tunable using the� parameter. This change is brought due to the need of tracking
the inferred � f values i.e. ~� f , at all � x . ~� f represents the expected value of� f given � x as seen
during the demonstrations. The variation of the trajectories of� f with � and � is shown
in Figure 5. � modulates the speed with which the reaction to perturbation occurs. On
the other hand, a high value of� increases the amplitude of reopening. Figure6 shows the
streamlines of this system for two di�erent� values in order to visualize the global behavior
of trajectories evolving under the CDS model.

At this point, it is important to distinguish our approach from the single GMM approach
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Figure 7: Task reproduction with explicit and implicit coupling shown in (a) state space,(b) time variation.
Dotted lines show the implicitly coupled task execution. Note the di�erence in the directions from which
the convergence occurs in the two cases. In the explicitly coupled execution, convergence is faster in� x than
in � f .

of [8] mentioned in section3.2. Figure 7 shows a comparison of the CDS trajectories with
those obtained using the single GMM approach, where the coupling is only implicit. It
shows the behavior when a perturbation is introduced only on the abscissa. Clearly, in
the implicitly coupled case, the perturbation is not appropriately transferred to the un-
perturbed dimension� f and the motion in that space remains unchanged. This behavior
can be signi�cantly di�erent depending on the state of the two sub-systems just after the
perturbation.

To investigate this, we initialize the single GMM model as well as the CDS model at
di�erent points in state space and follow the two trajectories. Figure 8 shows this experi-
ment. Notice the sharp di�erence in the trajectories as the CDS trajectories try to maintain
correlation between the state space variables and always converge from within the demon-
stration envelope. On the other hand, the trajectories of the single GMM approach have no
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Figure 8: Comparison between the motions obtained by single GMM andCDS approaches. Note how the
order of convergence can be remarkably di�erent when starting at di�erent positions in state space.

de�nite convergence constraint2. This di�erence is signi�cantly important in the context of
reach-grasp tasks. If the trajectories converge from the topof the envelope, it means that
the variable � f (�ngers) is converging faster than the� x (hand position). This translates to
premature �nger closure as compared to what was seen during thedemonstrations. If they
converge from below, it means that the �ngers are closing later than what was seen during
the demonstrations. While the former is undesirable in any reach-grasp task, the latter is
undesirable only in the case of moving/falling objects.

4. Experiments and Results

A core assumption of our approach lies in the fact that human motorcontrol exploits
an explicit coupling between hand and �nger motions. In this section,we �rst validate this
hypothesis by reporting on a simple motion studies conducted with �ve subjects performing
a reach and grasp task under perturbations. Data from human motion are used in three
capacities: a) to con�rm that the CDS model captures well the coupling across hand and
�ngers found in human data; b) as demonstration data to build the probability density
functions of the CDS model; c) to identify relationships across the variables of the system
and to use these to instantiate the two free parameters (� and � ) of the CDS model.

In the second part of this section, we perform various experiments in simulation and with
the real iCub robot to validate the performance of the CDS model as a good model to ensure
robust control of reach and grasp in robots. In particular, we test that the CDS model is
indeed well suited to handle fast perturbations which typically need re-planning and are
di�cult to handle online. Videos for all robot experiments and simulations are cross-linked
to the corresponding �gures.

2It is also worth mentioning that the two trajectories are fairly similar when initialized close to the
demonstration envelope.
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4.1. Instantiation of CDS variables

In all the experiments presented here, including human data, the state of our system is
composed of the cartesian position and orientation of the end-e�ector (human/robot wrist)
and of the following 6 �nger joint angles:

� 1 for curl of the thumb.

� 2 for index �nger proximal and distal joints.

� 2 for middle �nger proximal and distal joints.

� 1 for combined curl of ring and little �nger.

We use the norm-2 for the coupling function, i.e. 	(:) = jj :jj in the CDS implementation
for modeling both human data and for robot control. As a result, �ngers' reopen and close
as a function of the distance of the hand to the target.

Since CDS controls for the hand displacement, we use the moore-penrose inverse kine-
matic function to convert the end-e�ector pose to joint angles ofthe arm. In simulation and
on the real iCub robot, we control the 7 degrees of freedom (DOFs) of the arm and 6 �nger
joints at an update rate of 20 ms.

4.2. Validation against human data

As discussed in Section2.2, many physiological studies reported a natural coordination
between arm and �ngers when humans reach for objects. In order to assess quantitatively
these observations and provide data in support of our model of a coupling between the
two processes of hand transport and �nger motion, we performed experiments with human
subjects performing reach-to-grasp tasks underfast and random perturbations.

4.2.1. Experimental Procedure
The experimental setup is shown in Figure1(a). The subject stands in front of two

stationary targets, a green and a red ball. An on-screen target selector prompts the subject
to reach and grasp one of the two balls depending on the color shownon the screen. To
start the experiment, one of the ball is switched on and the subject starts to reach towards
the corresponding object. As the subject is moving his hand and preshaping his �ngers to
reach for the target ball, a perturbation is created by abruptly switching o� the target ball
and lighting up the second ball. The switch across targets occurs only once during each trial
about 1 to 1.5 sec. after the onset of the motion. The subject's hand has usually by then
traveled more than half the distance separating it from the target. The trial stops once the
subject has successfully grasped the second target.

To ensure that we are observing natural response to such perturbations, subjects were
instructed to proceed at their own pace and no timing for the overall motion was enforced.
As a result, the time it took for each subject to complete the motionvaried across subjects
and across trials. Since encoding in the CDS model is time-invariant, modeling is not a�ected
by these changes in duration of experiment completion.
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Figure 9: Hand-�nger coordination during perturbed and unpertu rbed demonstrations.

We recorded the kinematic of the hand, �ngers and arm motions of 5subjects across
20 trials. 10 of the trials were unperturbed, i.e. the target was notswitched during the
motion. Subjects did the 20 trials in one swipe. Unperturbed and perturbed trials were
presented in random order for each subject. The arm and hand motion was recorded using
three XSensTM IMU motion sensors attached to the upper arm, forearm and wristof the
subject at a frame rate of 20ms3. The �ngers' motion was recorded using a 5DTTM data
glove. Angular displacements of the arm joint and �nger joints werere-constructed and
mapped to the iCub's arm joint angles and �nger joint angles. To assess visually that the
correspondence between human motion and robot motion is well done, the iCub simulator
runs simultaneously while the human is performing the trials.

Data from the 10 unperturbed trials and from the 5 subjects are used to train the 3
GMM-s which serve as basis for the CDS model. The next section discusses how well the
CDS model renders human behavior under perturbations.

4.2.2. Qualitative analysis of human motion
Visual inspection of the human data con�rms a steady coupling between hand transport

and �ngers closing in the unperturbed situation, whereby �ngers close faster as the hand
approaches faster the target, and conversely. This coupling persists across trials and for
all subjects. Most interesting is the observation that, duringperturbed trials, just after
the target is switched, the �ngers �rst reopen and then close again synchronously with the
hand, as the hand moves toward the new target, see Figure1(b). Note that, in all trials,
the �ngers re-opened irrespective of the fact that the aperture of the �ngers at the time of
perturbation was large enough to accommodate the object. This suggests that this reaction

3To compensate for drifts from the IMU and data glove measurements, subjects were instructed to
proceed to a brief calibration procedure after each trial. This procedure lasted no more than 5 sec.
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Figure 10: (a) shows the data recorded from perturbed human demonstrations. The adaptation behavior
under perturbation follows the same correlations between hand position and �ngers as in the unperturbed
behavior. The region where perturbation is handled is indicated in redand zoomed in(b) where 3 di�erent
demonstrations (red, blue and magenta) from the same subject are shown.

to perturbation is not driven by the need of accommodating the object within the grasp, but
may be the result of some inherent property of �nger-hand motorcontrol. It appears as if
the �ngers would �rst \reset" to a location that corresponds to the expected location for the
�ngers given the new hand-target distance. Once reset, �ngersand hand would resume their
usual coupled hand-�nger dynamics. Figure9 shows this typical two-phase motions after
perturbation, plotting the displacement of the proximal joint of the index �nger against the
distance of the hand to the target ball.

The CDS model, using the distance of the hand to the target for thecoupling function
	( � x), gives a very good account of this two phases response and is shown overlaid on
the data, see Figure10(a). Observe further that the trajectories followed by the �ngers
after perturbations remain within the covariance envelope of the model. This envelope
represents the variability of �nger motion observed during theunperturbedtrials. This hence
con�rms the hypothesis that the �ngers resume their unperturbed motion model shortly after
responding to the perturbation. This is particularly visible when looking at Figure 10(b),
zoomed in on the part of the trajectories during and just after the perturbation. Three
di�erent demonstrations are shown. It can be seen that, irrespective of the state of the
�ngers � f at the time of perturbation, the �nger trajectories tend to follow the mean of
the regressive model (which is representative of the mean of the trajectories followed by
the human �nger during the unperturbed trials) before the perturbation occurs. Just after
the perturbations, the �ngers then re-open (trajectory goesdown) and then close again
(trajectory goes up).

4.2.3. Modeling human motion
The previous discussion assessed the fact that the CDS model gives a good account of

the qualitative behavior of the �ngers's motion after perturbation. We here discuss how, by
tuning the two open parameters of the CDS models, namely� and � (see Table1), we can
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Figure 11: Correlations deduced from the experiments.(a) shows the linear correlation found between mean
hand velocity prior to perturbation and the amplitude of �nger reop ening. (b) shows the same between speed
and amplitude of �nger reopening. (c) compares the trajectories obtained using the inferred parameters with
the actual human demonstration. Finger motion obtained using optimal parameters values is also shown in
black (dashed).

better reproduce individual trajectories of the �ngers for a particular trial and subject.
As illustrated in Section3.3, these two parameters control, respectively, for the speed and

amplitude of the motion of the reopening of the �ngers after perturbation. Although these
parameters can be set arbitrarily in our model, a closer analysis of human data during the
perturbed trials shows that one can estimate these parameters by observing the evolution
of hand motionprior to perturbation. When plotting the average velocity of the hand prior
to perturbation and the amplitude of �nger reopening, we see thatthe two parameters are
linearly correlated, see Figure11(a). Similarly, when plotting the velocity at which �ngers
reopen against the amplitude of reopening, we see that these two parameters are also linearly
correlated. In other words, the faster the hand moves towardsthe target, the less the �ngers
reopen upon perturbation. Further, the faster the �ngers reopen the larger the amplitude
of the reopening of the �ngers. Note that while there is a correlation, this correlation is
subject dependent. To reproduce human data for a particular trial with CDS, we can hence
use the above two observations combined with the fact that� and � control the speed and
amplitude of the �ngers' motion.
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Figure 12: E�ect of changing parameters � and � on the error between model run and mean human
demonstrations.

Figure 11(c) shows that this results in a good qualitative �t of the motion after pertur-
bation. 3 perturbed trials chosen from subject 1 are shown. Similarplots for other subjects
can be found inAppendix B. We analyze the quality of the �t by comparing it to the motion
obtained from the model withoptimal parameter values. We �nd the optimal values of�
and � for a particular demonstration by performing a grid search and optimizing the �t
between the model generated and demonstrated motion4. The �tting is evaluated using the
absolute error between the joint angle values (radians) summed over a time window from
the instant of perturbation till the end of demonstration. Figure12 shows the variation of
this error term with � and � . It can be seen that the error �rst decreases and then increases
with progressively increasing� and � . The contours of the error function on variation with
� and � are shown in Figure12(c)

Note that it is not the aim of this analysis to �nd the optimal parameters, but to give
the reader an idea of how good is the �t obtained from a brute forcegrid search as compared

4This estimate of the optimal � and � is only accurate upto the width of the grid chosen.
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(a) f _� x ; _� f g = f (f � x ; � f g) (b) _� x = f (� x ) j _� f = g (� f ; 	 ( � x ))

(c) Hand Closeup

Figure 13: Reach-grasp task executions with and without explicit coupling. The explicitly coupled execution
(b) prevents premature �nger closure, ensuring that given any amount of perturbation, formation of the
grasp is prevented until it is safe to do so. In the implicitly coupled execution (a), �ngers close early and
the grasp fails. (c) shows closeup of hand motion post perturbation with implicit (left ) and explicit ( right )
coupling.

to what we can inferprior to the perturbation. Further, the discrepancy between the model
run with inferred parameters and the actual data is only due to thenoise in the linear
correlation.

It is important to emphasize that the CDS model is built using data from the unperturbed
trials and the parameters� and � are inferred from the perturbed trials. It is a representative
of a generic pattern of �nger-hand coupled dynamics that is present across subjects and trials
but that is not subject speci�c. Further, the estimation of the parameters� and � is done
based on an observation of a coupling across variables in a single subject, and is not �tted
for a particular trial. The CDS model, hence, encapsulates generalpatterns of �nger-hand
motions inherent to human motor control. We discuss next how suchhuman-like dynamics
of motion can be used for robust control of hand-�nger motion for successful grasp during
perturbations.

4.3. Validation of the model for robot control
We here test the performance of CDS for robust control of reach and grasp motion in

the iCub robot. We �rst show using the iCub simulator that the approach presented in this
work is decidedly better than our previous approach of learning task dynamics using only
one dynamical system. It ensures successful task completion under spatial perturbation of
the target where the previous approach fails. We also investigate the adaptability of the
CDS model in reacting quickly to counter fast perturbations (evenwhen not demonstrated
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a priori). Finally, we conduct experiments on the iCub robot to validate the ability of the
model to adapt on-the-
y reach and grasp motion under various forms of perturbations.

4.3.1. Comparison with single DS approach
In Section3.3 we discussed the fact that the \naive" approach in which one would learn

the hand-�nger coupling by using a single GMM (the state vector in this case comprises the
hand position and �nger joints) would likely fail at encapsulating explicitly the correlation
between the two dynamics. We had then advocated the use of an explicit coupling function
to couple the dynamics of �nger and hand motion, each of which are learned through separate
GMM-s, leading to the CDS model. We here illustrate this in simulation when reproducing
the human experiment. The iCub robot �rst reaches out for the green ball. Midway through
the motion, the target is switched and the robot must go and reachfor the red ball.

Figure 13(a) shows that using a single GMM for the hand and �nger dynamics fails
at embedding properly the correlations between the reach and grasp sub-systems and does
not adapt well the �ngers' motion to grasp for the new ball target. Lack of an explicit
coupling leads to a poor coordination between �ngers and hand motion. As a result, the
�ngers close too early, leading the ball to fall. Figure13(b) shows the same task when
performed using the CDS model. The �ngers �rst reopen following the perturbation, hence
delaying the grasp formation, and then close according to the correlations learned during
the demonstrations, leading to a successful grasp. Figure13(c) shows the hand from top
view where the re-opening of �ngers can be seen clearly in the explicitly coupled task.

4.3.2. Adaptability to fast perturbations
An important aspect of encoding motion using autonomous dynamical systems is that

it o�ers a great resilience to perturbations. We here show that thiso�ers robust control in
the face of very rapid perturbations.

In Section4.2, we showed that the two free parameters� and � of the CDS model could
be inferred from human data. We then already emphasized the role of these two parameters
to control for speed and amplitude of �nger reopening. To recall, the larger� the faster the
motion. Hence, executing the task with values for� that di�er from that set from human
data may be interesting for robot control for two reasons: a) asrobots can move much
faster than humans, using larger values for� could exploit the robot's faster reaction times
while retaining the coupling between �nger and hand motion found in human data. b) Also,
using values of� that depart from these inferred from human demonstration may allow to
generate better responses to perturbations that send the system to area of the state space
not seen during demonstrations.

Figure 14(a) illustrates the role that � plays in controlling for the reaction time. As
expected, the time it takes for the �nger to adapt to perturbation decreases when increasing
� ( i.e. � Tadapt ) corresponds to the time elapsed between the onset of the perturbation
and the time when the �nger position re-join the original desired position, i.e. the position
the �nger should have been in the unperturbed case. Figure14(b) plots � against � Tadapt .
Recovery times can be signi�cantly reduced by increasing� . This is the time it takes for the
robot to completely recover from the perturbation and reach thetarget position successfully.
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Figure 14: (a) - Speed of reaction varies with varying� . Adaptation is qualitatively the same, but faster as
� increases.(b) shows the variation of recovery time � Tadapt with � .

It is important to emphasize once more that this trajectory \re-planning" is performed at
run-time, i.e within the 20 ms close-loop control of the robot. Again,there is no replanning,
adaptation to perturbation results from providing the CDS model with the current position
of the �nger, hand and target. Importantly, this provides a smooth response that enables
the robot to change its trajectorywithout stopping to re-plan.

We illustrate this capacity to adapt to rapid perturbation in an experiment with the
iCub robot when the robot must not only adapt the trajectory of its hand but also switch
across grasp types, see Figure15. Due to hardware constraints on the real platform, we
perform this particularly high speed perturbation experiment in theiCub simulator. As the
robot moves towards the target located on its left, the target ball suddenly disappears and
reappears on the right of the robot. In contrast to our previousexperiment, the ball is no
longer supported against gravity and hence, starts falling. For the robot to reach and grasp
the object before it reaches the 
oor, the robot has to act veryquickly. This requires a fast
adaptation from palm-up to palm-down grasp as well as for �ngers,while the target keeps
on moving. To perform this task, we �rst trained two separate CDSmodel to learn two
di�erent dynamics for power grasp in palm-up and palm-down con�gurations, respectively.
Learning was done by using �ve (unperturbed) human demonstrations of this task. During
reproduction, the robot initially starts moving towards the targetusing the CDS model for
palm-down con�guration grasp. After perturbation, the robot switches to the CDS model
for palm-up power grasp.

To ensure that the robot intercepts the falling object in its workspace, we use the ap-
proach presented in our previous work on catching 
ying objects by Kim et al. [50]5. This
allows us to determine the catching point as well as the time it will take the object to reach
this point (assuming here a simple free fall for the dynamics of the object). This determines
the maximal value for � Tadapt , which we then use to set the required� to intercept the
object in time.

5In Kim et al. [ 50] we had used a single GMM to control for both arm and hand motion. This would not
allow to quickly adapt to di�erent grasp on the 
y as shown in Section 4.3.1
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Figure 15: Fast adaptation under perturbation from palm-down to palm-up power grasp.

Tp (s) � Tadapt (s)
1.2 2.82
1.5 2.77
1.8 2.76
2.1 2.80

Table 1: Variation of time taken to recover from perturbation with t he instant of perturbation. Note that
the total task duration is of the order of 4 s. The values were taken at constant � and hence do not change
with the instant of perturbation. This shows the robustness of the proposed method in adapting against
perturbations.

As shown in Figure15, switching to the second CDS model ensures that replanning of
the �nger motion is done in coordination with the hand motion (now redirected to the falling
object). Precisely, the orientation of the hand and the �nger curl are changed synchronously
yielding the hand to close its grasp on the falling object at the right time. Notice that
as the distance-to-target suddenly increases, the CDS model forces the �ngers to reopen.
Subsequently, the �ngers close proportionally as the distance between the falling ball and the
robot hand decreases, hence maintaining the correlations seen during the demonstrations.
Note that to generate this task, we control also for the torso (adding two more variables to
the inverse kinematics so as to increase the workspace of the robot).

4.3.3. Switching between di�erent grasp types
Here, we perform another experiment showing the ability of our system to adapt the

�ngers' con�guration (in addition to adapting the �ngers' dynamics of motion) so as to
switch between pinch and power grasps. We learn two separate CDSmodels for pinch grasp
of a thin object (screw-driver) and power grasp of a spherical object, respectively, from �ve
demonstrations of each task during unperturbed trials.

Figure 16 illustrates the experiment. While the robot reaches for the thin object, pre-
shaping its �ngers to the learned pinch grasp, we suddenly presentthe spherical object in
the robot's �eld of view. The robot then redirects its hand to reachfor the spherical object
in place of the thin one. Since this experiment does not require very rapid reacting time, the
experiment could be conducted on the real iCub robot. In this experiment, the two objects
are color-tracked using the iCub's on-board cameras. Change of target is hardcoded. As
soon as the green object is detected in the cameras, the target location is switched from the
red object to the green one and the robot's CDS model is switched accordingly.

Figure 17 shows the motion of robot's index �nger proximal joint as it adapts to the
induced perturbation. During the �rst phase of the motion, the �nger closes rapidly so as
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(a)

(b)

Figure 16: Validating the model on the real iCub platform. The robot adapts between pinch and power
grasps at di�erent spatial positions in real time without any delays for re-planning. (a) and (b) show the
same task from front and top view to better visualize the motion of the �ngers.
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Figure 17: Motion of one �nger joint angle under grasp-type perturbation as recorded from the simulation.
The inferred joint position predicted by the models both the grasp models (power and pinch) are shown in
dotted. The adaptation is smooth and robust w.r.t the instant when perturbation was applied. Time taken
to recover from perturbation (� Tadapt ) remains constant.

to yield a pinch grasp. After perturbation, the �ngers reopen to yield the power grasp that
would better accommodate the spherical object. The robot smoothly switches from following
the pinch-grasp model requiring smaller hand aperture (i.e. larger joint value) to the power
grasp model which requires a larger aperture (smaller joint value) by reopening the �ngers
and subsequently closing them on the target, thereby, completingthe task successfully.

While we discussed in the previous section the advantage to adapt the parameter �
when one needs to perform tasks that require very high reaction times (reaction times that
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are higher than what humans could achieve), we here show that, using the � parameter
inferred from human data is su�cient when required reaction times are su�ciently slow.
We emphasize once more the bene�t of the model to achieve very robust behavior in the
face of various perturbations. To this end, we perform two variants on the task described
above where we introduce perturbations.

First, we run the same switching tasks but present the spherical objects at di�erent
instants after the onset of motion. The perturbation instants vary from middle of the task
duration to almost completion of the task. Table1 gives the recovery time and time instant
of perturbation. Tp denotes the instant at which the perturbation was introduced. Since we
do not change the value of the parameter� , at each run, the time taken by the robot to
recover from the perturbation remains the same. Figure17 shows the resulting trajectories
for the index �nger. Even when the perturbation occurs shortly before completion of pinch
grasp, the model readapts the grasp smoothly, yielding a correctgrasp at the second object.

Second, to highlight the performance of CDS to adapt continuouslyand on the 
y control
for coordinated motion of hand and �ngers on the real iCub robot,we introduce perturbation
during the �rst part of the previous task in which the iCub robot reaches with a pinch grasp
(here the robot reaches for a glass of wine6), see Figure18. To introduce perturbations
on-the-
y during execution of the pinch grasp, we implement a re
ex behavior using the
iCub's skin touch sensors on the forearm, such that, when the robot detects a touch on its
forearm, it immediately moves its arm away from the point where it wastouched. This
re
ex overlays the CDS controller. When the CDS controller takes over again, it uses the
new position of the arm to predict the new �nger and hand motion.

Figure 18 shows the displacement along time of the proximal and distal �nger joints of
the index �nger, hand aperture and the distance-to-target, when the robot is solely reaching
with a pinch grasp and is being perturbed once on its way toward the object. The hand
aperture is computed as the distance between the tips of the thumb and index �ngers.
As expected, as the hand is moved away from the target, the �ngers reopen in agreement
with the correlations learned in the CDS model and and then close intopinch grasp on the
object. The �nger motion robustly adapts to the perturbation, changing the hand aperture
in coordination with the perturbed hand position and �nally reaches the target state for the
pinch grasp with � 1 cm hand aperture. Figure19 shows one cycle of tactile perturbation
on the real robot.

5. Conclusion and Discussion

In this paper we presented a model for encoding and reproducing di�erent reach-to-grasp
motions that allows to handle fast perturbations in real-time. We showed that this capacity
to adapt without re-planning could be used to allow to switch across grasps types smoothly.
The model was strongly inspired from the way humans adapt reach and grasp motion under
perturbation. Human data was used to determine a generic couplingbetween control of

6The location of the grasping point on the glass of wine is indicated by a red patch that is detected
through two external cameras running at 100Hz.
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Figure 18: Coordinated hand arm motion while the robot was perturbed multiple times in di�erent di-
rections. Finger joint angles, and hence, the hand aperture, change according to the learned correlations.
Vertical red line marks the instants at which the robot was perturbed.

Figure 19: Spatio-temporal perturbations created using the tactile interface of the iCub. Top row shows the
motion of the robot. Bottom row shows closeup of the hand.

hand transport and �nger aperture. It was also used to determine quantitative values for
this coupling.

We �rst showed that the model gives a good qualitative account of human reach and
grasp motions during perturbation. We then showed through bothsimulation and real robot
experiments that the CDS model provides a robust controller for avariety of reach and grasp
motions in robots.

Importantly, we showed that, while human behavior is a good sourceof inspiration, one
can depart from this model, by tuning the parameters of the model,to induce better robot
performance if needed and for tasks which humans struggle to perform. This follows a trend
in programming by demonstration that emphasizes the fact that what is good for the human
is not necessarily good for the robot (biological inspiration should betaken with a grain of
salt).

In this work, biological inspiration pertains to our use of coupled dynamical systems
to control for hand motion and �nger motion. We showed that, introducing such explicit
coupling, was advantageous over a more implicit coupling that could belearned with other
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density based methods for estimating the correlations across all the variables. The two free
parameters of the CDS model o�er a variety of ways in which the model can be adapted to
realize motion that are optimal for the particular robot platform or the particular task.

5.1. Shortcomings and Future Work

In this work, we have shown that the model parameters can be tuned in order to either
generate \human-like" motion or to induce \un-human-like" very fast reactions. Determin-
ing which parameter to use is task and platform dependent. One could, like we did here,
learn how reaction times vary as a function of the open parameter� and choose the optimal
� taking into consideration task and platform-related constraints,such as minimizing jerk,
choosing a time window large enough to ensure successful task completion. The advantage
of having such simple and explicit parametrization of the model is thatit allows to reuse
the same model and adapt the speed to di�erent tasks, e.g. a power grasp may be realized
in a very rapid manner when one must hurriedly grasp a support to prevent a fall. It may
on the other hand be performed very slowly when grasping a raw egg.

In this work we have assumed that there exists only one way in which the object can be
grasped and that this corresponds to the way demonstrated by the human. This assumption
makes it di�cult to complete the grasp if the object can be grasped inmultiple ways and is
presented in a pose di�erent from the one seen during the demonstrations, or when the robot
does not have the same dexterity as the human. By construction the CDS model allows to
have a single attractor point and hence it is constrained to yield a single grasp pose. We
showed that one could switch across di�erent CDS models and one could hence consider
learning di�erent CDS models for each possible grasp pose. A secondary mechanism, e.g.
based on measuring the closest distance between the current posture and the variety of
grasp pose could determine which CDS model to activate and when. Our current work is
investigating how the CDS model could be extended to learn not justa single attractor point
but an attractor surface. Indeed, most objects can be grasped at di�erent points along their
graspable surface.

This work ignored the notion of obstacle. In this paper, perturbations related to either
a displacement of the target or to a displacement of the end-e�ector during task comple-
tion. Obstacle avoidance is certainly a major source of disturbances during reach-and-grasp
tasks and current planning techniques o�er advanced and robustsolutions to trajectory
planning that can deal with very cluttered environments. Embedding obstacle avoidance
while retaining the time-invariance property of autonomous dynamical systems which we
exploit here would provide an interesting extension to the present model and would o�er an
interesting alternative to planning techniques. Even the quickest planning techniques still
require planning times of the order of 0.5 second [20] when considering obstacles. This is
too slow when the required reactions times are of the order of only afew milliseconds (such
as when reaching for a falling object as shown in this paper). Current work in our group
is investigating the possibility to embed obstacle avoidance in the scheme proposed by the
CDS model.

Throughout the work presented here we have assumed that we had access to an e�cient
inverse kinamtic (IK) solver. Thanks to which, we were able to learn the models of the
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task and control the robot in the operational space. This is however too restrictive and
creates a major drawback in practice. While we advocated that theCDS model needs no
replanning, we were still running at a 20ms close-loop. Most of these20ms were devoted to
computing the IK. Indeed, computing the output of the regressive models of CDS requires
less than a couple of ms. Another obvious drawback of controlling in task space is that the
motion in task space inferred by the model may not always yield a feasible solution in joint
space, especially when transferring human data to robots, and when a perturbation sends
the motion very far from the motion demonstrated. In the experiments presented here, we
did not encounter this problem as the task was always chosen so as to remain within the
center of the robot's workspace.

Lastly, the nature of the coupling assumed in our model is only one directional, i.e., a
perturbation in the reaching motion is re
ected in the �nger motion and not the other way
round. A typical case where such a coupling is useful is when the dynamic controller for the
�ngers is malfunctioning and is too slow to follow the desired trajectory. In such a scenario,
the arm must also slow down and synchronize with the �nger motion. Such a behavior, even
if not biologically inspired, is desirable in the context of robotics wherecontroller noise is
ubiquitous. Although we did not explicitly include this in our experiments, the CDS model is
actually capable in its current formulation, to handle bidirectional coupling. This is because
the learned GMM is a joint distribution of distance-to-target and �nger con�guration. One
could take the conditional on either of the variables (in the presented scheme, we take it on
distance-to-target). However, it needs to be studied what e�ect (in terms of stability) this
bi-directional dependency will have on the overall system.
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Appendix A. Stability of CDS model

To prove that the CDS model indeed follows the conditions9, we use the properties of
its individual components. For simplicity, we shift all the data into thegoal reference frame
so that � �

x = � �
f = 0. The condition 9a holds true due to the global stability of SEDS. To

investigate the stability of the coupling, we consider
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The model which governs the evolution of the coupled variable� f is given by
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Taking the limiting values and usingA.1 , we get

lim
t !1

_� f = E
h

_� f j� � f

i

which is again globally asymptotically stable due to SEDS. However, as seen from Algorithm
1, the multiplier � boosts the velocity before incrementing the state. It is trivial to see that
this does not a�ect the global asymptotic behavior of the model since negative de�nite
A+A T

2 ) � A+A T

2 is also negative de�nite for� > 0. For details on why such a condition is
required for global stability, the reader is referred to [9].

Appendix B. Model performance with inferred parameter valu es
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Figure B.20: Comparison of model run with inferred parameter values, optimal parameter values and the
actual human demonstrations under perturbation.
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