
Lifted Parameter Learning in Relational Models

Babak Ahmadi1 babak.ahmadi@iais.fraunhofer.de
Kristian Kersting1,2,3 kristian.kersting@iais.fraunhofer.de
Sriraam Natarajan3 snataraj@wakehealth.edu
1Fraunhofer IAIS, Knowledge Discovery Department, Sankt Augustin, Germany
2University of Bonn, Institute of Geodesy and Geoinformation, Bonn, Germany
3Wake Forest University, School of Medicine, Winston-Salem, USA

Abstract

Lifted inference approaches have rendered
large, previously intractable probabilistic in-
ference problems quickly solvable by employ-
ing symmetries to handle whole sets of in-
distinguishable random variables. Still, in
many if not most situations training rela-
tional models will not benefit from lifting:
symmetries within models easily break since
variables become correlated by virtue of de-
pending asymmetrically on evidence. An ap-
pealing idea for such situations is to train and
recombine local models. This breaks long-
range dependencies and allows to exploit lift-
ing within and across the local training tasks.
Moreover, it naturally paves the way for on-
line training for relational models. Specif-
ically, we develop the first lifted stochastic
gradient optimization method with gain vec-
tor adaptation, processing each lifted piece
one after the other.

1. Introduction

Statistical relational models provide powerful for-
malisms to compactly represent complex real-world
domains. Unfortunately, computing the exact gradient
in such models and hence learning the parameters with
exact maximum-likelihood training using current opti-
mization methods like conjugate gradient and limited-
memory BFGS is often not feasible as it requires com-
puting marginal distributions of the entire underyling
graphical model. Since inference is posing major com-
putational challenges one has to resort to approximate
learning by local training using a pseudolikelihood ap-
proach or a global propagation algorithm like BP for

This paper is a shortened version of (Ahmadi et al., 2012)

approximate partial derivatives (Lee et al., 2007).
Recently, there have been some advances in learn-
ing SRL models, especially for Markov Logic Net-
works (MLN) (Kok & Domingos, 2009; 2010; Khot
et al., 2011; Richardson & Domingos, 2006). Though
all these methods exhibit good empirical performance,
they apply the closed-world assumption, i.e., what-
ever is unobserved in the world is considered to
be false. To deal with missing information, algo-
rithms based on classical EM have been developed
for ProbLog, CP-logic, PRISM, probabilistic relational
models, Bayesian logic programs as well as gradient-
based approaches for relational models with complex
combining. All these approaches, however, assume a
batch learning setting; only Huynh and Mooney (2011)
have recently studied online training of MLNs. Here,
training was posed as an online max margin optimiza-
tion problem and a gradient for the dual was derived
and solved using incremental-dual-ascent algorithms.
One attractive avenue to scale relational learning is
based on lifted message-passing approaches (Singla &
Domingos, 2008; Kersting et al., 2009). They have
rendered large, previously intractable probabilistic in-
ference problems quickly solvable by employing sym-
metries to handle whole sets of indistinguishable ran-
dom variables. Still, in many if not most situations
training relational models will not benefit from lifting:
Symmetries within a model easily break since variables
become correlated by virtue of depending asymmetri-
cally on evidence. Thus, lifting produces new models
that are often not far from propositionalized, there-
fore canceling the benefits of lifting for training. This
might explain why this is the first work tackling lifted
parameter learning. Moreover, in relational learning
we often face a single mega-example. Consequently,
many if not all standard statistical learning methods
do not naturally carry over to the relational case. Con-
sider e.g. stochastic gradient methods that update the
weight vector in an online setting. They often scale
sub-linearly with the amount of training data, making



Lifted Parameter Learning in Relational Models

them very attractive for statistial relational learning.
Empirically, they are even found often to be more re-
silient to errors made when approximating the gradi-
ent. Unfortunately, stochastic gradients coincide with
batch gradients in the relational case since there is only
a single mega-example. In this paper, we demonstrate
how to overcome both limitations. To do so, we shatter
the full model into pieces. In each iteration, we train
the pieces independently and re-combine the learned
parameters from each piece Breaking long-range de-
pendencies allows one — as we will show — to exploit
lifting across the local training tasks. It also paves the
way for online training of relational models since we
can treat (mini-batches of) pieces as training examples
and process one piece after the other. Based on this
insight, we develop our main algorithmic contribution:
the first lifted online training approach for relational
models using stochastic gradient optimization method
with gain vector adaptation based on natural gradi-
ents. As our experimental evaluation demonstrates, it
already results in considerable efficiency gains, simply
because unlike batch training it starts optimizing long
before having seen the entire mega-example even once.
However, we can do considerably better. The way we
shatter the full model into pieces greatly effects the
learning quality. Important influences between vari-
ables might get broken. To overcome this, we ran-
domly grow relational piece patterns that form trees.
Our experimental results show that tree pieces can bal-
ance well lifting and quality of the online training.
We proceed as follows. We recap Markov logic net-
works, the probabilistic relational framework we fo-
cus on for illustration purpose. Then, we develop the
stochastic relational gradient framework. Before con-
cluding, we present our experimental evaluation.

2. Lifted Online Training

We develop our lifted online training method
within the framework of Markov logic net-
work (MLN) (Richardson & Domingos, 2006) but it
naturally carries over to other relational frameworks.
An MLN is defined by a set of first-order formulas Fi
with associated weights wi, i ∈ {1, . . . , k}. Together
with a set of constants C = {C1, C2, . . . , Cn} it
can be grounded to define a markov network. The
joint probability distribution of an MLN is given by

P (X = x) = Z−1 exp
(∑F

i θini(x)
)

where for a given

possible world x, i.e. an assignment of all variables
X, ni(x) is the number of times the ith formula is
evaluated true and Z is a normalization constant.
The standard parameter learning task for Markov
networks can be formulated as follows. Given a set of
training instances D = {D1, D2, . . . Dn} each constist-

ing of an assignment to the variables in X the goal is
to output a parameter vector θ specifying a weight for
each fk ∈ F . Typically, however, only a single mega-
example — a large set of inter-connected facts — is
given, denoted as E. To train the model, we can seek
to maximize the log-likelihood function logP (D | θ)
given by `(θ,D) = 1

n

∑
D logPθ(X = xDn), typically

by a gradient-descent approach.The gradient of the
likelihood function is given by:

∂`(θ,D)/∂θk = fk(D)−MEx∼Pθ [fk(x)] (1)

This gradient expression has a particularly intuitive
form: the gradient attempts to make the feature
counts in the empirical data equal to their expected
counts relative to the learned model. Note that, to
compute the expected feature counts, we must per-
form inference relative to the current model at every
step of the gradient process. Consequently, there is
a close interaction between the training approach and
the inference method employed for training.

Lifted Belief propagation (LBP) approaches (Singla &
Domingos, 2008; Kersting et al., 2009) have recently
drawn a lot of attention as they render large previously
intractable models quickly solvable by exploiting sym-
metries. Therefore, they automatically group nodes
and potentials of the graphical model into supernodes
and superpotentials if they have identical computation
trees (i.e., the tree-structured unrolling of the graph-
ical model computations rooted at the nodes). LBP
then runs a modified BP on this lifted (clustered) net-
work simulating BP on the propositional network ob-
taining the same results.
In the fully observed case we can simply count how of-
ten a clause is true. Unfortunately, in many real-world
domains, the mega-example available is incomplete,
i.e., the truth values of some ground atoms may not be
observed. For instance in medical domains, a patient
rarley gets all of the possible tests. In the presence of
missing data, however, the maximum likelihood esti-
mate typically cannot be written in closed form. As a
numerical optimization problem, it typically involves
nonlinear, iterative optimization and multiple calls to
a relational inference engine as subroutine.

When learning parameters of a given model for a given
set of observations the presence of non symmetrical ev-
idence on the variables mostly destroys the symmetries
making lifted approaches virtually of no use and most
lifted approaches basically fall back to the ground vari-
ants. Thus we need to seek a way to make the learning
task tractable. An appealing idea for efficiently train-
ing large models is to divide the model into pieces that
are trained independently and to exploit symmetries
across multiple pieces for lifting.



Lifted Parameter Learning in Relational Models

(a) Orig. model (b) Depth d = 0 (c) Depth d = 1 for f1 and f3 (d) Trees d = 1 (e) Tree shattering

Figure 1. Schematic factor-graph depiction of the difference between likelihood (a), standard piecewise (b,c) and treewise
training (d) (Circles denote variables, boxes denote factors). (e) Tree shattering for factor f3 from the original model.

Piecewise Shattering: In piecewise training, we de-
compose the mega-example and its corresponding fac-
tor graph into tractable, not necessarily disjoint sub-
graphs (or pieces) P = {p1, . . . , pk} that are trained in-
dependently (Sutton & McCallum, 2009). Intuitively,
the pieces turn the single mega-example into a set of
many training examples and hence pave the way for
online training. In many applications, the local in-
formation in each factor is already enough to do well
at predicting the outputs. The parameters learned lo-
cally are then used to perform global inference on the
whole model.
More formally, at training time, each piece from P =
{p1, . . . , pk} has a local likelihood as if it were a seper-
ate graph, i.e., training example and the global likeli-
hood is estimated by the sum of its pieces: `(θ,D) =∑
pi∈P `(θ|pi , D|pi). Here θ|pi denotes the parameter

vector containing only the parameters appearing in
piece pi and D|pi the evidence for variables appear-
ing in the current piece pi. The standard piecewise
decomposition breaks the model into a seperate piece
for each factor, intuitively discarding dependencies of
the model parameters Although the piecewise model
helps to significantly reduce the cost of training the
way we shatter the full model into pieces greatly ef-
fects the learning and lifting quality. Strong influences
between variables might get broken. Consequently, we
next propose a shattering approach that aims at keep-
ing strong influence but still features lifting.

Relational Tree Shattering: Assume that the
mega-example has been turned into a single factor
graph for performing inference, cf. Fig. 1(a). Start-
ing from each factor, we extract networks of depth d
rooted in this factor. A local network of depth d = 0
thus corresponds to the standard piecewise model as
shown in Fig. 1(b), i.e. each factor is isolated in a
seperate piece. Networks of depth d = 1 contain the
factor in which it is rooted and all of its direct neigh-
bors, Fig. 1(c). Thus when we perform inference in
such local models using say belief propagation (BP)
the messages in the root factor of such a tree resemble
the BP messages in the global model up to the d-th
iteration. Longer range dependencies are neglected. A
small value for d keeps the pieces small and makes in-

ference and hence training more efficient, while a large
d is more accurate. However, it has a major weakness:
pieces of densely connected networks may contain con-
siderably large subnetworks, rendering the standard
piecewise learning procedure useless.
To overcome this, we now present a shattering ap-
proach that randomly grows piece patterns forming
trees. A tree of factors can then be generalized into a
tree pattern, i.e., conjunctions of relational ”clauses”
by variablizing their arguments. For every clause of
the MLN we thus form a tree by performing a ran-
dom walk rooted in one ground instance of that clause.
This process can be viewed as a form of relational
pathfinding (Richards & Mooney, 1992). The rela-
tional treefinding is summarized in Alg. 1. The ac-
tual parameter learning (omitted here due to space
restrictions) is interleaved with the relational treefind-
ing such that we can learn paramters before having
seen the whole data set. For a given set of Clauses
C and a mega example E the algorithm starts off by
constructing a tree pattern for each clause Ci (lines
1-12). Therefore, it first selects a random ground
instance fi (lines 3) from where it grows the tree.
Then it performs a breadth-first traversal of the factors
neighborhood and samples uniformly whether they are
added to the tree or not (lines 7). If the sample p is
larger than t|Pi|, where t ∈ [0, 1] is a discount thresh-
old and |Pi| the size of the current tree, the factor
and its whole branch are discarded and skipped in the
breadth-first traversal, otherwise it is added to the cur-
rent tree (lines 8-11). A small t basically keeps the
size of the tree small while larger values for t allow for
more factors being included in the tree. The proce-
dure is carried out to a depth of at most d, and then
stops growing the tree. This is then generalized into a
piece-pattern by variablizing its arguments (line 12).
All pieces are now constructed based on these piece
patterns. For fi we apply the pattern Pk of clause Ck
which generated the factor (lines 13-15). These tree-
based pieces can balance efficiency and quality of the
parameter estimation well. Fig. 1(e) shows the tree
rooted in the factor f3 where green colors show that
the factors have been included in the piece while all
red factors have been discarded. The neighborhood of



Lifted Parameter Learning in Relational Models

Algorithm 1: RelTreeFinding: Relational Treefinding

Input: Set of clauses C, a mega example E, depth d,
and discount t ∈ [0, 1]

Output: Set of tree pieces T
// Tree-Pattern Finding

1 Initialize the dictionary of tree patterns to be empty, i.e.,
P = ∅ ;

2 for each clause Ci ∈ C do
3 Select a random ground instance Fi of Ci in E;
4 Initialize tree pattern for Fi, i.e., Pi = {Fi} ;

// perform random walk in a breath-first
manner starting in Fi

5 for Fk = BFS.next() do
6 if current depth > d then break;
7 sample p uniformly from [0, 1] ;

8 if p > t|Pi| or Fkwould induce a cycle then
9 skip branch rooted in Fk in BFS ;

10 else
11 add Fk to Pi;
12 Variablilize Pi and add it to dictonary P ;

// Construct tree-based pieces using the
relational tree patterns

13 for each Fj ∈ E do
14 Find Pk ∈ P matching Fj , i.e., the tree pattern

rooted in the clause Ck corresponding to factor Fj ;
15 Unify Pk with Fj to obtain piece Tj and add Tj to T ;
16 return T ;

factor f3 is traversed in a breadth-first manner, i.e.,
first its direct neighbors in random order. Assume we
have reached factor f4 first. We uniformly sample a
p ∈ [0, 1]. If it is small enough, e.g. p = 0.3 < 0.91,
f4 is added to the tree. We proceed until we have
reached the maximum depth or we cannot add any
more edges without including cycles. In this way we
can include longer range dependencies in our pieces
without sacrificing efficiency. The connectivity of a
piece and thereby its size can be controlled via the
discount t. By forming tree patterns and applying
them to all factors we ensure that we have a potentially
high amount of lifting: Since we have decomposed the
model into smaller pieces, the influence of the evidence
is limited to a shorter range and hence features lifting
the local models. Moreover, we get an upper bound
on the log partition function A(Θ), that is,

A(Θ) ≤
∑

t
A(Θ|t) ≤

∑
r
A(Θ|r) ,

where Θ|t is the vector Θ with zeros in all entire that
do not correspond to the tree t. With Θ|r we denote
the same vector for pieces of depth 0. The proof is
ommitted due to space restrictions. Now, we show how
to turn this upper bound into a lifted online training
for relational models.

Lifted Stochastic Meta-Descent Stochastic gradi-
ent descent algorithms update the weight vector in an
online setting. We essentially assume that the pieces

are given one at a time. The algorithms examine the
current piece and then update the parameter vector
accordingly. They often scale sub-linearly with the
amount of training data, making them very attractive
for large training data as targeted by statistial rela-
tional learning. To reduce variance, we may form mini-
batches consisting of several pieces on which we learn
the parameters locally. In contrast to the propositional
case, however, mini-batches have another important
advantage: we can now make use of the symmetries
within and across pieces for lifting. More formally,

the gradient in (1) is approximated by
∑
i

1
#i

∂`(θ,Di)
∂θk

,
where the mega-example D is partitioned into pieces
respectively mini-batches of pieces Di. Here #i de-
notes a per-clause normalization that counts how often
each clause appears in mini-batch Di. This is a major
difference to the propositional case and avoids “double
counting” parameters. For a single piece we count how
often a ground instance of each clause appears in the
piece Di. If Di consists of more than one piece we add
the count vector of all pieces.
Since the gradient involves inference per batch only, in-
ference is again feasible and more importantly liftable
as we will show in the experimental section. Conse-
quently, we can scale to problem instances traditional
relational methods can not easily handle. However,
the asymptotic convergence of first-order stochastic
gradients to the optimum can often be painfully slow
if e.g. the step-size is too small. One is tempted
to just employ standard advanced gradient techniques
such as L-BFGS. Unfortunately most advanced gradi-
ent methods do not tolerate the sampling noise inher-
ent in stochastic approximation: it collapses conjugate
search directions (Schraudolph & Graepel, 2003) and
confuses the line searches that both conjugate gradient
and quasi-Newton methods depend upon. Gain adap-
tation methods like Stochastic Meta-Descent (SMD)
overcome these limitations by using second-order in-
formation to adapt a per-parameter step size (Vish-
wanathan et al., 2006). However, while SMD is very
efficient in Euclidian spaces, Amari (Amari, 1998)
showed that the parameter space is actually a Rie-
mannian space of the metric C, the covariance of the
gradients. Consequently, the ordinary gradient does
not give the steepest direction of the target function.
The steepest direction is instead given by the natural
gradient, that is by the C−1g. 1 Intuitively, the nat-
ural gradient is more conservative and does not allow
large variances. If the gradients highly disagree in one
direction, one should not take the step. Thus, when-

1For more information on the natural gradient and how
it relates to Newton’s method and to the Hessian matrix
we refer to (Le Roux et al., 2007).



Lifted Parameter Learning in Relational Models

ever we have computed a new gradient gt we integrate
its information and update the covariance at time step
t by the following expression:

Ct = γCt−1 + gtg
T
t (2)

where C0 = 0, and γ is a parameter that controls
how much older gradients are discounted. Now, each
parameter θk has its own step size ηk and is updated by

θt+1 = θt − ηt · gt (3)
The gain vector ηt serves as a diagonal conditioner
and is simultaneously adapted with the meta-gain µ:

ηt+1 ≈ ηt ·max(
1

2
, 1− µgt+1 · vt+1) (4)

where v ∈ Θ characterizes the long-term dependence
of the system parameters on gain history over a time
scale governed by the decay factor 0 ≤ λ ≤ 1 and is
iteratively updated by

vt+1 = λvt − η · (gt + λC−1vt) . (5)
To ensure a low computational complexity and a good
stability of the computations, one can maintain a low
rank approximation of C, (Le Roux et al., 2007). Using
a per-parameter step-sizes considerably accelerates the
convergence of stochastic natural gradient descent.

Putting everything together, we arrive at the lifted
online learning for relational models That is, we ran-
domly select a mini-batch, compute its gradient using
lifted inference, and update the parameter vector. We
iterate these steps until convergence. A common ap-
proach to test this considers the change of the param-
eter vector in the last l steps. If the change is small
enough, we consider it as evidence of convergence. To
simplify things, we may also simply fix the number
of times we cycle through all mini-batches. This also
allows to compare different methods.

3. Experimental Evaluation

We implemented our two algorithmic contributions of
the lifted online learning for relational models (SMD
and Tree-SMD) in Python. As a batch learning refer-
ence, we used scaled conjugate gradient (SCG) (Moller,
1993). SCG chooses the search direction and the step
size by using information from the second order ap-
proximation. Inference that is needed as a subrou-
tine for the learning methods was carried out by lifted
belief propagation (LBP) (Kersting et al., 2009; Ah-
madi et al., 2011). For evaluation, we computed the
conditional marginal log-likelihood (CMLL) (Lee et al.,
2007), which is defined with respect to marginal prob-
abilities. All Experiments were conducted on a single
cluster machine with 2.4 GHz and 64 GB of RAM.

Friends-and-Smokers MLN: In our first experi-
ment we learned the parameters for the “Friends-and-
Smokers” MLN (Singla & Domingos, 2008). We en-
riched the network by adding two clauses: if someone

is stressed he is more likely to smoke and people having
cancer should get medical treatment. For a given set of
parameters we sampled 5 datasets from the joint distri-
bution of the MLN with 10 persons. For each dataset
we learned the parameters on this dataset and evalu-
ated on the on the other four. The ground network
of this MLN contains 380 factors and 140 variables.
Fig. 2(left) shows the CMLL averaged over all of the
5 folds. We ran the lifted piecewiese learning with a
batchsize of 10 and a step size of 0.2. Other parame-
ters for SMD were chosen to be λ = .99, µ = 0.1, and
γ the discount for older gradients as 0.9.
As one can see, the lifted SMD has a steep learning
curve and has already learned the parameters before
seeing the mega example even once (indicated by the
black vertical line), whereas SCG requires four passes
over the entire training data to have a similar result
in terms of CMLL. Moreover, as Fig 2(right) shows,
piecewise learning greatly increases the lifting com-
pared to batch learning, which essentially does not fea-
ture lifting at all.
CORA Entity Resolution MLN: In our second
experiment we learned the parameters for the Cora
entity resolution MLN, one of the standard datasets
for relational learning. In the current paper, how-
ever, it is used in a non-standard, more challenging
setting. For a set of bibliographies the Cora MLN
has facts, e.g., about word appearances in the titles
and in author names, the venue a paper appeared in,
its title, etc. The task is to infer whether two en-
tries in the bibliography denote the same paper (pred-
icate samePaper) and two venues, titles and authors
(sameVenue, sameTitle, and sameAuthor respectively)
are the same. We sampled 20 bibliographies and ex-
tracted all facts corresponding to these bibliography
entries. We constructed five folds then trained on four
folds and tested on the fifth. We employed a trans-
ductive learning setting for this task. The MLN was
parsed with all facts for the bibliographies from the five
folds, i.e., the queries consisting of all four predicates
were hidden for the test fold. The resulting ground
network consisted of 36, 390 factors and 11, 181 vari-
ables. We learned the parameters using SCG, lifted
SMD as well as Tree-SMD using relational treefinding
with a threshold t of 0.9. The trees consisted of ten
factors on average. So we updated with a batchsize of
100 for the trees and 1000 for standard pieces with a
stepsize of 0.05, λ = .99, µ = 0.9, γ = 0.9.
Fig. 2 (center) shows the averaged learning results.
Again, online training does not need to see the whole
mega-example; it has learned long before finishing
one pass over the entire data. Moreover, building
tree pieces considerably speeds-up the learning pro-
cess. The Cora dataset contains a lot of strong de-



Lifted Parameter Learning in Relational Models

10 20
Passes over the data

−160

−120

−80

C
M

L
L

SCG
SMD

10−2 100 102
Passes over the data

−2000

−1000

0

C
M
L
L

Tree SMD
SMD
SCG 1 5 10 50 100200 500

Size of mini-batches

10−2

10−1

100

L
if
ti
n
g
R
a
ti
o
(G

ro
u
n
d
/L
if
te
d
)

SCG

Figure 2. ”Passes over mega-example” vs. Test-CMLL for the Friends-and-Smokers (left) and CORA (center) MLNs (the
higher the better). Right: Lifting ratio for varying mini-batch size on Friends-and-Smokers MLN. (Best viewed in color)

pendencies which are all broken if we form one piece
per factor. The trees on the other hand preserve parts
of the local structure which significantly helps during
learning. They convey a lot of additional information
such that one obtains a better solution with less data.

4. Conclusions

In this paper, we have introduced the first lifted online
training method for relational models. We employed
the intuitively appealing idea of separately training
pieces of the full model and combining the results in
iteration and turned it into an online stochastic gra-
dient method that processes one lifted piece after the
other. This approach converges to the same quality
solution over an order of magnitude faster, simply be-
cause unlike batch training it starts optimizing long
before having seen the entire mega-example even once.

The stochastic relational gradient framework devel-
oped in the present paper puts many interesting re-
search goals into reach. For instance, one should tackle
one-pass relational learning by investigating different
ways of gain adaption and scheduling of pieces for up-
dates. One should also investigate budget constraints
on both the number of examples and the computation
time per iteration. At massive scales parallel and dis-
tributed algorithms for training are essential.

Acknowledgements: The authors thank the reviewers

for the helpful comments. BA and KK were supported

by the Fraunhofer ATTRACT fellowship STREAM and

the European Commission under contract number FP7-

248258-First-MM. SN gratefully acknowledges the support

of the DARPA Machine Reading Program under AFRL

prime contract no. FA8750-09-C-0181. Any opinions, find-

ings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily

reflect the view of DARPA, AFRL, or the US government.

References

Ahmadi, B., Kersting, K., and Sanner, S. Multi-
Evidence Lifted Message Passing, with Application

to PageRank and the Kalman Filter. In IJCAI,
2011.

Ahmadi, B., Kersting, K., and Natarajan, S. Lifted
online training of relational models with stochastic
gradient methods. In ECML-PKDD, 2012.

Amari, S. Natural gradient works efficiently in learn-
ing. Neural Comput., 10:251–276, February 1998.

Huynh, T. and Mooney, R. Online max-margin weight
learning for markov logic networks. In SDM, 2011.

Kersting, K., Ahmadi, B., and Natarajan, S. Counting
belief propagation. In UAI, Montreal, Canada, 2009.

Khot, T., Natarajan, S., Kersting, K., and Shavlik,
J. Learning markov logic networks via functional
gradient boosting. In ICDM, 2011.

Kok, S. and Domingos, P. Learning Markov logic net-
work structure via hypergraph lifting. In ICML,
2009.

Kok, S. and Domingos, P. Learning Markov logic net-
works using structural motifs. In ICML, 2010.

Le Roux, N., Manzagol, P.-A., and Bengio, Yoshua.
Topmoumoute online natural gradient algorithm. In
NIPS, 2007.

Lee, S.-I., Ganapathi, V., and Koller, D. Efficient
structure learning of Markov networks using L1-
regularization. In NIPS, 2007.

Moller, M. A scaled conjugate gradient algorithm for
fast supervised learning. Neural Networks, 1993.

Richards, B.L. and Mooney, R.J. Learning relations
by pathfinding. In AAAI, pp. 50–55, 1992.

Richardson, M. and Domingos, P. Markov logic net-
works. Machine Learning, 62(1-2):107–136, 2006.

Schraudolph, N. and Graepel, T. Combining conjugate
direction methods with stochastic approximation of
gradients. In AISTATS, pp. 7–13, 2003.

Singla, P. and Domingos, P. Lifted First-Order Belief
Propagation. In AAAI, 2008.

Sutton, C. and McCallum, A. Piecewise training for
structured prediction. Machine Learning, 2009.

Vishwanathan, S. V. N., Schraudolph, Nicol N.,
Schmidt, Mark W., and Murphy, Kevin P. Accel-
erated training of conditional random fields with
stochastic gradient methods. In ICML, 2006.


